TY - JOUR
T1 - Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents
AU - Reinsch, Brian C.
AU - Forsberg, Brady
AU - Penn, R. Lee
AU - Kim, Christopher S.
AU - Lowry, Gregory V.
PY - 2010/5/1
Y1 - 2010/5/1
N2 - Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl-, NO3-, SO42-, HPO4 2-, and HCO3-) or to dissolved oxygen (saturated, ∼9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)28H2O) and iron sulfate species, possibly schwertmannite (Fe3+16O 16(OH,SO4)12-1310-12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (γ-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.
AB - Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl-, NO3-, SO42-, HPO4 2-, and HCO3-) or to dissolved oxygen (saturated, ∼9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)28H2O) and iron sulfate species, possibly schwertmannite (Fe3+16O 16(OH,SO4)12-1310-12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (γ-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.
UR - http://www.scopus.com/inward/record.url?scp=77951808901&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951808901&partnerID=8YFLogxK
U2 - 10.1021/es902924h
DO - 10.1021/es902924h
M3 - Article
C2 - 20380376
AN - SCOPUS:77951808901
SN - 0013-936X
VL - 44
SP - 3455
EP - 3461
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 9
ER -