Abstract
Let (R,m,κ) be a local ring. We give a characterization of R-modules M whose local cohomology is finite length up to some index in terms of asymptotic vanishing of Koszul cohomology on parameter ideals up to the same index. In particular, we show that a quasi-unmixed module M is asymptotically Cohen-Macaulay if and only if M is Cohen-Macaulay on the punctured spectrum if and only if sup{ℓ(Hi(f1,…,fd;M))|f1,…,fd=m, i<d}<∞ for d=dim(M)=dim(R).
Original language | English (US) |
---|---|
Pages (from-to) | 198-224 |
Number of pages | 27 |
Journal | Journal of Algebra |
Volume | 543 |
DOIs | |
State | Published - Feb 1 2020 |
Bibliographical note
Publisher Copyright:© 2019 Elsevier Inc.
Keywords
- Hilbert-Samuel multiplicities
- Koszul cohomology
- Lech's inequality
- Local cohomology