TY - JOUR
T1 - Characterization of soil algal bioavailable phosphorus in the Minnesota River Basin
AU - Fang, F.
AU - Brezonik, P. L.
AU - Mulla, D J
AU - Hatch, L. K.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005/7
Y1 - 2005/7
N2 - Soil algal bioavailable P (ABP) is the P fraction that contributes most directly to eutrophication in freshwaters affected by agricultural nonpoint-source pollution. There are uncertainties regarding the algal bioavailability of P sorbed to calcareous glacial till soils in the upper Midwest. The ABP of soil samples with a broad range of pH and calcium carbonate content from six sites across the Minnesota River Basin (MRB) was measured by algal bioassay, and relationships with various soil physical and chemical properties were studied. For soils of the MRB, a major agricultural watershed in the upper Midwest, ABP was significantly correlated (p < 0.001) with Bray P, Mehlich-III P, NaOH P, Oxalate P, and Fe-paper P. Among them, Fe-paper P approximated ABP best, particularly for calcareous soils. For acidic soils, amorphous Fe and Al apparently were the primary P retention agents in soil particles. Soil sorption data were well described by the linearized Langmuir sorption model. Although the P sorption maximum (Γ∞) could not be predicted from basic soil physical and chemical properties, the sorption energy constant (b) was highly correlated with soil pH, clay content, and organic matter (OM) content. A P saturation index (PSIs) that uses sorptivity (Γ∞ X b) as the measure of sorption capacity gave the best estimate of soil ABP among the predictors used in this study. Phosphorus saturated index itself can be approximated by the widely available Bray-P value for soils in the MRB.
AB - Soil algal bioavailable P (ABP) is the P fraction that contributes most directly to eutrophication in freshwaters affected by agricultural nonpoint-source pollution. There are uncertainties regarding the algal bioavailability of P sorbed to calcareous glacial till soils in the upper Midwest. The ABP of soil samples with a broad range of pH and calcium carbonate content from six sites across the Minnesota River Basin (MRB) was measured by algal bioassay, and relationships with various soil physical and chemical properties were studied. For soils of the MRB, a major agricultural watershed in the upper Midwest, ABP was significantly correlated (p < 0.001) with Bray P, Mehlich-III P, NaOH P, Oxalate P, and Fe-paper P. Among them, Fe-paper P approximated ABP best, particularly for calcareous soils. For acidic soils, amorphous Fe and Al apparently were the primary P retention agents in soil particles. Soil sorption data were well described by the linearized Langmuir sorption model. Although the P sorption maximum (Γ∞) could not be predicted from basic soil physical and chemical properties, the sorption energy constant (b) was highly correlated with soil pH, clay content, and organic matter (OM) content. A P saturation index (PSIs) that uses sorptivity (Γ∞ X b) as the measure of sorption capacity gave the best estimate of soil ABP among the predictors used in this study. Phosphorus saturated index itself can be approximated by the widely available Bray-P value for soils in the MRB.
UR - http://www.scopus.com/inward/record.url?scp=22744449034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22744449034&partnerID=8YFLogxK
U2 - 10.2136/sssaj2003.0093
DO - 10.2136/sssaj2003.0093
M3 - Article
AN - SCOPUS:22744449034
SN - 0361-5995
VL - 69
SP - 1016
EP - 1025
JO - Soil Science Society of America Journal
JF - Soil Science Society of America Journal
IS - 4
ER -