TY - JOUR
T1 - Characterization of pesticide sorption and degradation in macropore linings and soil horizons of Thatuna silt loam
AU - Mallawatantri, A. P.
AU - McConkey, B. G.
AU - Mulla, D. J.
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 1996
Y1 - 1996
N2 - The effect of changes in soil characteristics with depth because of soil horizonation and macroporosity on fate of pesticides is poorly understood. Soil from the surface A horizons (0-0.65 m), albic E horizons (1.05-1.35 m), argillic Bt horizons (1.4-3.5 m), and surface linings of macropores in the argillic horizons (Bt-M, 1.4-3.5 m) of a Thatuna silt loam (fine-silty, mixed, mesic Xeric Argialbolls) were characterized for their physical, chemical, and microbiological effects on adsorption, desorption, and mineralization of 2,4-D, carbofuran, and metribuzin. Organic carbon (OC) contents decreased for soil materials in the order A (1.22%) > Bt-M (0.36%) > Bt (0.25%) = E (0.20%), and were correlated with the number of soil microbial colony forming units (log CFU) that decreased in the order A (7.4) > Bt-M (6.1) > E (5.6) = Bt (5.4). Percent macroporosity (pores 2-5 mm diam.) decreased in the order Bt (1.1%) > A (0.7%) > E (0.6%), which is the same order for decreases in saturated hydraulic conductivity (log m s-1), namely; Bt (-6) > A (-6.2) > E (-7.0). Freundlich adsorption partition coefficients (K(t) - L kg-1) for A horizon soil with 2,4-D (1.1), carbofuran (1.0), and metribuzin (1.6) were significantly greater than in subsurface E or Bt matrix material. Sorption K(t) values in macropore linings with carbofuran (1.1) and metribuzin (2.0) were comparable to or greater than their respective values of 1.0 and 1.6 in A horizon material. Percent mineralization in the A horizon after 139 d for [U-14C] 2,4-D (81.0%) and carbofuran (14.7%) was significantly greater than in all subsurface soil materials. Mineralization in Bt macropore linings for 2,4-D (17.0%) and carbofuran (8.4%) was significantly greater than in other subsurface soil materials. Mineralization of [U-14C] metribuzin was negligible (<3%) in all soil materials after 139 d.
AB - The effect of changes in soil characteristics with depth because of soil horizonation and macroporosity on fate of pesticides is poorly understood. Soil from the surface A horizons (0-0.65 m), albic E horizons (1.05-1.35 m), argillic Bt horizons (1.4-3.5 m), and surface linings of macropores in the argillic horizons (Bt-M, 1.4-3.5 m) of a Thatuna silt loam (fine-silty, mixed, mesic Xeric Argialbolls) were characterized for their physical, chemical, and microbiological effects on adsorption, desorption, and mineralization of 2,4-D, carbofuran, and metribuzin. Organic carbon (OC) contents decreased for soil materials in the order A (1.22%) > Bt-M (0.36%) > Bt (0.25%) = E (0.20%), and were correlated with the number of soil microbial colony forming units (log CFU) that decreased in the order A (7.4) > Bt-M (6.1) > E (5.6) = Bt (5.4). Percent macroporosity (pores 2-5 mm diam.) decreased in the order Bt (1.1%) > A (0.7%) > E (0.6%), which is the same order for decreases in saturated hydraulic conductivity (log m s-1), namely; Bt (-6) > A (-6.2) > E (-7.0). Freundlich adsorption partition coefficients (K(t) - L kg-1) for A horizon soil with 2,4-D (1.1), carbofuran (1.0), and metribuzin (1.6) were significantly greater than in subsurface E or Bt matrix material. Sorption K(t) values in macropore linings with carbofuran (1.1) and metribuzin (2.0) were comparable to or greater than their respective values of 1.0 and 1.6 in A horizon material. Percent mineralization in the A horizon after 139 d for [U-14C] 2,4-D (81.0%) and carbofuran (14.7%) was significantly greater than in all subsurface soil materials. Mineralization in Bt macropore linings for 2,4-D (17.0%) and carbofuran (8.4%) was significantly greater than in other subsurface soil materials. Mineralization of [U-14C] metribuzin was negligible (<3%) in all soil materials after 139 d.
UR - http://www.scopus.com/inward/record.url?scp=0030111160&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030111160&partnerID=8YFLogxK
U2 - 10.2134/jeq1996.00472425002500020004x
DO - 10.2134/jeq1996.00472425002500020004x
M3 - Article
AN - SCOPUS:0030111160
SN - 0047-2425
VL - 25
SP - 227
EP - 235
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
IS - 2
ER -