TY - JOUR
T1 - Characterization of DNA damage induced by 3,4-estrone-o-quinone in human cells
AU - Nutter, Louise M.
AU - Ngo, Emily O.
AU - Abul-Hajj, Yusuf J.
PY - 1991
Y1 - 1991
N2 - The DNA damage induced in a human breast cancer cell line treated with 1,5 (10)-estradiene-3,4,17-trione (3,4-estrone-o-quinone; 3,4-EQ) has been measured qualitatively and quantitatively. Single-strand (ss) but not double-strand (ds) DNA breaks were formed in MCF-7 cells treated with 3,4-EQ. The ss DNA breaks formed in MCF-7 cells were partially repaired after incubation of cells in 3,4-EQ-free media for 2 and 4 h (i.e. 33 and 23% repair, respectively, as compared to the ss DNA breaks in cells after a 1-h exposure to 3,4-EQ without a recovery period). The formation of interstrand DNA cross-links was demonstrated in MCF-7 cells exposed to the bifunctional alkylating agent, mitomycin C, but not in those exposed to 3,4-EQ. Protein-linked DNA breaks were detected in MCF-7 cells after exposure to camptothecin and etoposide but not 3,4-EQ, suggesting that the ss DNA breaks induced by 3,4-EQ are unlikely to be mediated via topoisomerases. The induction of ss DNA breaks was detected in the estrogen receptor-negative cell line, BT-20, after exposure to 3,4-EQ. Furthermore, excess estradiol in culture media did not prevent 3,4-EQ-induced ss DNA breaks, suggesting that the DNA damage was not mediated via the estrogen receptor. Evaluation of the newly synthesized quinone analogue, 5,6,7,8-tetrahydro-1-2-naphthoquinone, in the ss DNA breakage assay revealed that the A and B ring moiety of 3,4-EQ is sufficient to produce ss DNA breaks in MCF-7 cells.
AB - The DNA damage induced in a human breast cancer cell line treated with 1,5 (10)-estradiene-3,4,17-trione (3,4-estrone-o-quinone; 3,4-EQ) has been measured qualitatively and quantitatively. Single-strand (ss) but not double-strand (ds) DNA breaks were formed in MCF-7 cells treated with 3,4-EQ. The ss DNA breaks formed in MCF-7 cells were partially repaired after incubation of cells in 3,4-EQ-free media for 2 and 4 h (i.e. 33 and 23% repair, respectively, as compared to the ss DNA breaks in cells after a 1-h exposure to 3,4-EQ without a recovery period). The formation of interstrand DNA cross-links was demonstrated in MCF-7 cells exposed to the bifunctional alkylating agent, mitomycin C, but not in those exposed to 3,4-EQ. Protein-linked DNA breaks were detected in MCF-7 cells after exposure to camptothecin and etoposide but not 3,4-EQ, suggesting that the ss DNA breaks induced by 3,4-EQ are unlikely to be mediated via topoisomerases. The induction of ss DNA breaks was detected in the estrogen receptor-negative cell line, BT-20, after exposure to 3,4-EQ. Furthermore, excess estradiol in culture media did not prevent 3,4-EQ-induced ss DNA breaks, suggesting that the DNA damage was not mediated via the estrogen receptor. Evaluation of the newly synthesized quinone analogue, 5,6,7,8-tetrahydro-1-2-naphthoquinone, in the ss DNA breakage assay revealed that the A and B ring moiety of 3,4-EQ is sufficient to produce ss DNA breaks in MCF-7 cells.
UR - http://www.scopus.com/inward/record.url?scp=0026063210&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026063210&partnerID=8YFLogxK
M3 - Article
C2 - 1653233
AN - SCOPUS:0026063210
SN - 0021-9258
VL - 266
SP - 16380
EP - 16386
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 25
ER -