Characteristic cycles and gevrey series solutions of a-hypergeometric systems

Christine Berkesch, María Cruz Fernández-Fernández

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We compute the L-characteristic cycle of an A-hypergeometric system and higher Euler–Koszul homology modules of the toric ring. We also prove upper semicontinuity results about the multiplicities in these cycles and apply our results to analyze the behavior of Gevrey solution spaces of the system.

Original languageEnglish (US)
Pages (from-to)323-347
Number of pages25
JournalAlgebra and Number Theory
Volume14
Issue number2
DOIs
StatePublished - 2020

Bibliographical note

Publisher Copyright:
© 2020, Mathematical Sciences Publishers. All rights reserved.

Keywords

  • A-hypergeometric system
  • Characteristic cycle
  • D-module
  • Gevrey series
  • Irregularity sheaf
  • Toric ring

Fingerprint

Dive into the research topics of 'Characteristic cycles and gevrey series solutions of a-hypergeometric systems'. Together they form a unique fingerprint.

Cite this