TY - JOUR
T1 - Channel network source representation using digital elevation models
AU - Montgomery, David R.
AU - Foufoula‐Georgiou, Efi
PY - 1993/12
Y1 - 1993/12
N2 - Methods for identifying the size, or scale, of hillslopes and the extent of channel networks from digital elevation models (DEMs) are examined critically. We show that a constant critical support area, the method most commonly used at present for channel network extraction from DEMs, is more appropriate for depicting the hillslope/valley transition than for identifying channel heads. Analysis of high‐resolution DEMs confirms that a constant contributing area per unit contour length defines the extent of divergent topography, or the hillslope scale, although there is considerable variance about the average value. In even moderately steep topography, however, a DEM resolution finer than the typical 30 m by 30 m grid size is required to accurately resolve the hillslope/valley transition. For many soil‐mantled landscapes, a slope‐dependent critical support area is both theoretically and empirically more appropriate for defining the extent of channel networks. Implementing this method for overland flow erosion requires knowledge of an appropriate proportionality constant for the drainage area‐slope threshold controlling channel initiation. Several methods for estimating this constant from DEM data are examined, but acquisition of even limited field data is recommended. Finally, the hypothesis is proposed that an inflection in the drainage area‐slope relation for mountain drainage basins reflects a transition from steep debris flow‐dominated channels to lower‐gradient alluvial channels.
AB - Methods for identifying the size, or scale, of hillslopes and the extent of channel networks from digital elevation models (DEMs) are examined critically. We show that a constant critical support area, the method most commonly used at present for channel network extraction from DEMs, is more appropriate for depicting the hillslope/valley transition than for identifying channel heads. Analysis of high‐resolution DEMs confirms that a constant contributing area per unit contour length defines the extent of divergent topography, or the hillslope scale, although there is considerable variance about the average value. In even moderately steep topography, however, a DEM resolution finer than the typical 30 m by 30 m grid size is required to accurately resolve the hillslope/valley transition. For many soil‐mantled landscapes, a slope‐dependent critical support area is both theoretically and empirically more appropriate for defining the extent of channel networks. Implementing this method for overland flow erosion requires knowledge of an appropriate proportionality constant for the drainage area‐slope threshold controlling channel initiation. Several methods for estimating this constant from DEM data are examined, but acquisition of even limited field data is recommended. Finally, the hypothesis is proposed that an inflection in the drainage area‐slope relation for mountain drainage basins reflects a transition from steep debris flow‐dominated channels to lower‐gradient alluvial channels.
UR - http://www.scopus.com/inward/record.url?scp=0027803549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027803549&partnerID=8YFLogxK
U2 - 10.1029/93WR02463
DO - 10.1029/93WR02463
M3 - Article
AN - SCOPUS:0027803549
SN - 0043-1397
VL - 29
SP - 3925
EP - 3934
JO - Water Resources Research
JF - Water Resources Research
IS - 12
ER -