Abstract
Copper indium gallium diselenide (CIGS) based solar cells have shown efficiencies > 20% on the lab scale and are already in commercial production. Even though the optimal band gap of 1.6 eV to 1.7 eV can be achieved by increasing the Ga content, these solar cells show a maximum efficiency at ∼1.3 eV and any further increase in the Ga concentration and band gap results in lower efficiencies due to bulk and interfacial traps. This also prevents the use of wide band gap CIGS layer as a top cell for harvesting the solar cell spectrum in a tandem cell configuration. This paper reports the manufacturing challenges on the production of wide band gap aluminum doped CIGS layers (CIAGS) and devices fabricated using this material. We have fabricated 11.3% efficient solar cells using the CIAGS absorber layers.
Original language | English (US) |
---|---|
Title of host publication | 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1632-1634 |
Number of pages | 3 |
ISBN (Electronic) | 9781479943982 |
DOIs | |
State | Published - Oct 15 2014 |
Event | 40th IEEE Photovoltaic Specialist Conference, PVSC 2014 - Denver, United States Duration: Jun 8 2014 → Jun 13 2014 |
Publication series
Name | 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 |
---|
Other
Other | 40th IEEE Photovoltaic Specialist Conference, PVSC 2014 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 6/8/14 → 6/13/14 |
Bibliographical note
Publisher Copyright:© 2014 IEEE.
Keywords
- CIAGS solar cells
- tandem solar cells
- wide band gap absorber layer