CFD validation for hypersonic flight: Hypersonic double-cone flow simulations

Graham V. Candler, Ioannis Nompelis, Marie Claude Druguet, Michael S. Holden, Timothy P. Wadhams, Iain D. Boyd, Wen Lan Wang

Research output: Contribution to conferencePaperpeer-review

53 Scopus citations


At the 2001 AIAA Aerospace Sciences Meeting there was a blind comparison between computational simulations and experimental data for hypersonic double-cone and hollow cylinder-flare flows. This code validation exercise showed that in general there was good agreement between the continuum CFD simulations and experiments. Also, in general, there was good agreement between direct simulation Monte Carlo (DSMC) calculations and the experiments in regions of attached flow. However, in almost all of the computations, the heat transfer rate on the forebody of the cone was over-predicted by about 20%. The purpose of this paper is to report on our analysis of this difference. We perform CFD simulations of the hypersonic nozzle flow to assess the importance of vibrational nonequilibrium on the test conditions. We then recompute the flows using a new set of vibrational nonequilibrium conditions and consider the effects of a slip boundary condition at the model surface. Additionally, we analyze new heat transfer rate data on sharp and blunt 25° cones over a wider range of test conditions. This analysis appears to explain the discrepancy between the previous calculations and the experiments.

Original languageEnglish (US)
StatePublished - Dec 1 2002
Event40th AIAA Aerospace Sciences Meeting and Exhibit 2002 - Reno, NV, United States
Duration: Jan 14 2002Jan 17 2002


Other40th AIAA Aerospace Sciences Meeting and Exhibit 2002
Country/TerritoryUnited States
CityReno, NV


Dive into the research topics of 'CFD validation for hypersonic flight: Hypersonic double-cone flow simulations'. Together they form a unique fingerprint.

Cite this