Central limit theorems for classical likelihood ratio tests for high-dimensional normal distributions

Tiefeng Jiang, Fan Yang

Research output: Contribution to journalArticlepeer-review

85 Scopus citations


For random samples of size n obtained from p-variate normal distributions, we consider the classical likelihood ratio tests (LRT) for their means and covariance matrices in the high-dimensional setting. These test statistics have been extensively studied in multivariate analysis, and their limiting distributions under the null hypothesis were proved to be chi-square distributions as n goes to infinity and p remains fixed. In this paper, we consider the high-dimensional case where both p and n go to infinity with p/n → y ∈ (0, 1]. We prove that the likelihood ratio test statistics under this assumption will converge in distribution to normal distributions with explicit means and variances. We perform the simulation study to show that the likelihood ratio tests using our central limit theorems outperform those using the traditional chisquare approximations for analyzing high-dimensional data.

Original languageEnglish (US)
Pages (from-to)2029-2074
Number of pages46
JournalAnnals of Statistics
Issue number4
StatePublished - Aug 1 2013

Bibliographical note

Publisher Copyright:
© Institute of Mathematical Statistics, 2013.


  • Central limit theorem
  • Covariance matrix
  • High-dimensional data
  • Hypothesis test
  • Likelihood ratio test
  • Mean vector
  • Multivariate Gamma function
  • Multivariate normal distribution


Dive into the research topics of 'Central limit theorems for classical likelihood ratio tests for high-dimensional normal distributions'. Together they form a unique fingerprint.

Cite this