Causal clustering for 1-factor measurement models

Erich Kummerfeld, Joseph Ramsey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

Many scientific research programs aim to learn the causal structure of real world phenomena. This learning problem is made more difficult when the target of study cannot be directly observed. One strategy commonly used by social scientists is to create measurable "indicator" variables that covary with the latent variables of interest. Before leveraging the indicator variables to learn about the latent variables, however, one needs a measurement model of the causal relations between the indicators and their corresponding latents. These measurement models are a special class of Bayesian networks. This paper addresses the problem of reliably inferring measurement models from measured indicators, without prior knowledge of the causal relations or the number of latent variables. We present a provably correct novel algorithm, FindOneFactorClusters (FOFC), for solving this inference problem. Compared to other state of the art algorithms, FOFC is faster, scales to larger sets of indicators, and is more reliable at small sample sizes. We also present the first correctness proofs for this problem that do not assume linearity or acyclicity among the latent variables.

Original languageEnglish (US)
Title of host publicationKDD 2016 - Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1655-1664
Number of pages10
ISBN (Electronic)9781450342322
DOIs
StatePublished - Aug 13 2016
Event22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016 - San Francisco, United States
Duration: Aug 13 2016Aug 17 2016

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume13-17-August-2016

Other

Other22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016
CountryUnited States
CitySan Francisco
Period8/13/168/17/16

Bibliographical note

Funding Information:
Research reported in this publication was supported by grant U54HG008540 awarded by the National Human Genome Research Institute through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Research reported in this publication was also supported by grant 1317428 awarded by NSF

Publisher Copyright:
© 2016 ACM.

Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.

Fingerprint Dive into the research topics of 'Causal clustering for 1-factor measurement models'. Together they form a unique fingerprint.

Cite this