Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain

Gerhard R. Wittreich, Shizhong Liu, Paul J. Dauenhauer, Dionisios G. Vlachos

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Ammonia affords dense storage for renewable energy as a fungible liquid fuel, provided it can be efficiently synthesized from hydrogen and nitrogen. In this work, the catalysis of ammonia synthesis was computationally explored beyond the Sabatier limit by dynamically straining a ruthenium crystal (±4%) at the resonant frequencies (102 to 105+ Hz) of N2 surface dissociation and hydrogenation. Density functional theory calculations at different strain conditions indicated that the energies of NHx surface intermediates and transition states scale linearly, allowing the description of ammonia synthesis at a continuum of strain conditions. A microkinetic model including multiple sites and surface diffusion between step and Ru(0001) terrace sites of varying ratios for nanoparticles of differing size revealed that dynamic strain yields catalytic ammonia synthesis conversion and turnover frequency comparable to industrial reactors (400°C, 200 atm) but at lower temperature (320°C) and an order of magnitude lower pressure (20 atm).

Original languageEnglish (US)
Article numbereabl6576
JournalScience Advances
Volume8
Issue number4
DOIs
StatePublished - Jan 2022

Bibliographical note

Publisher Copyright:
Copyright © 2022 The Authors, some rights reserved;

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain'. Together they form a unique fingerprint.

Cite this