Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/non-COVID-19 Frameworks using Artificial Intelligence Paradigm: A Narrative Review

Smiksha Munjral, Mahesh Maindarkar, Puneet Ahluwalia, Anudeep Puvvula, Ankush Jamthikar, Tanay Jujaray, Neha Suri, Sudip Paul, Rajesh Pathak, Luca Saba, Renoh Johnson Chalakkal, Suneet Gupta, Gavino Faa, Inder M. Singh, Paramjit S. Chadha, Monika Turk, Amer M. Johri, Narendra N. Khanna, Klaudija Viskovic, Sophie MavrogeniJohn R. Laird, Gyan Pareek, Martin Miner, David W. Sobel, Antonella Balestrieri, Petros P. Sfikakis, George Tsoulfas, Athanasios Protogerou, Durga Prasanna Misra, Vikas Agarwal, George D. Kitas, Raghu Kolluri, Jagjit Teji, Mustafa Al-Maini, Surinder K. Dhanjil, Meyypan Sockalingam, Ajit Saxena, Aditya Sharma, Vijay Rathore, Mostafa Fatemi, Azra Alizad, Vijay Viswanathan, Padukode R. Krishnan, Tomaz Omerzu, Subbaram Naidu, Andrew Nicolaides, Mostafa M. Fouda, Jasjit S. Suri

Research output: Contribution to journalReview articlepeer-review

19 Scopus citations

Abstract

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for lowincome countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, lowcost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.

Original languageEnglish (US)
Article number1234
JournalDiagnostics
Volume12
Issue number5
DOIs
StatePublished - May 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • artificial intelligence
  • atherosclerosis
  • cardiovascular disease
  • diabetic retinopathy
  • risk assessment
  • risk stratification
  • surrogate biomarkers

Fingerprint

Dive into the research topics of 'Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/non-COVID-19 Frameworks using Artificial Intelligence Paradigm: A Narrative Review'. Together they form a unique fingerprint.

Cite this