Cardiomyocyte dimethylarginine dimethylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: involvement in oxidative stress and apoptosis

Lei Hou, Junjie Guo, Feng Xu, Xinyu Weng, Wenhui Yue, Junbo Ge

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Asymmetric dimethylarginine (ADMA) is a risk factor for heart diseases. Dimethylarginine dimethylaminohydrolase (DDAH) enzymes are key proteins for ADMA degradation. Endothelial DDAH1 is a vital regulator of angiogenesis. DDAH1 is also expressed in cardiomyocytes. However, the role of DDAH1 in cardiomyocytes needs further clarification. Herein, we used an inducible cardiac-specific DDAH1 knockdown mouse (cardiac DDAH1−/−) to investigate the role of cardiomyocyte DDAH1 in left-ventricular (LV) remodeling after acute myocardial infarction (AMI). DDAH1flox/flox and α-MHCMerCreMer mice were used to generate cardiac DDAH1−/− mice. Deletion of DDAH1 in cardiomyocytes was confirmed by Western blotting. No significant differences were observed in plasma ADMA levels and LV function between cardiac DDAH1−/− mice and control mice. Cardiac DDAH1−/− mice showed aggravated LV remodeling 4 weeks after AMI, as demonstrated by a large infarct area and impaired LV function. The rate of cardiomyocyte apoptosis and level of oxidative stress were higher in the LV tissue of cardiac DDAH1−/− mice than in that of control mice. However, treatment of cardiomyocytes with exogenous ADMA had no effect on reactive oxygen species (ROS) levels or apoptosis sensitivity. Cardiac DDAH1−/− LV tissue showed downregulated superoxide dismutase2 (SOD2) expression, and treatment of DDAH1−/− cardiomyocytes with the SOD mimic tempol significantly attenuated apoptosis and ROS levels under hypoxic conditions. Tempol administration also attenuated oxidative stress and apoptosis in cardiac DDAH1−/− LV tissue and partially alleviated LV remodeling after AMI. DDAH1 in cardiomyocytes plays a vital role in attenuating LV remodeling after AMI by regulating intracellular ROS levels and apoptosis sensitivity via a SOD2-dependent pathway.

Original languageEnglish (US)
Article number28
JournalBasic research in cardiology
Volume113
Issue number4
DOIs
StatePublished - Jul 1 2018

Bibliographical note

Funding Information:
Funding This study was supported by research Grants 81770254, 81600308 from National Natural Science Foundation of China.

Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords

  • Acute myocardial infarction
  • Apoptosis
  • Dimethylarginine dimethylaminohydrolase
  • Left-ventricular remodeling
  • Reactive oxygen species

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Cardiomyocyte dimethylarginine dimethylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: involvement in oxidative stress and apoptosis'. Together they form a unique fingerprint.

Cite this