Abstract
RATIONALE:: Mutations in glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) protein reduce cardiac Na current (INa) and cause Brugada Syndrome (BrS). GPD1-L has >80% amino acid homology with glycerol-3-phosphate dehydrogenase, which is involved in NAD-dependent energy metabolism. OBJECTIVE:: Therefore, we tested whether NAD(H) could regulate human cardiac sodium channels (Nav1.5). METHODS AND RESULTS:: HEK293 cells stably expressing Nav1.5 and rat neonatal cardiomyocytes were used. The influence of NADH/NAD on arrhythmic risk was evaluated in wild-type or SCN5A mouse heart. A280V GPD1-L caused a 2.48±0.17-fold increase in intracellular NADH level (P<0.001). NADH application or cotransfection with A280V GPD1-L resulted in decreased INa (0.48±0.09 or 0.19±0.04 of control group, respectively; P<0.01), which was reversed by NAD, chelerythrine, or superoxide dismutase. NAD antagonism of the Na channel downregulation by A280V GPD1-L or NADH was prevented by a protein kinase (PK)A inhibitor, PKAI6-22. The effects of NADH and NAD were mimicked by a phorbol ester and forskolin, respectively. Increasing intracellular NADH was associated with an increased risk of ventricular tachycardia in wild-type mouse hearts. Extracellular application of NAD to SCN5A mouse hearts ameliorated the risk of ventricular tachycardia. CONCLUSIONS:: Our results show that Nav1.5 is regulated by pyridine nucleotides, suggesting a link between metabolism and INa. This effect required protein kinase C activation and was mediated by oxidative stress. NAD could prevent this effect by activating PKA. Mutations of GPD1-L may downregulate Nav1.5 by altering the oxidized to reduced NAD(H) balance.
Original language | English (US) |
---|---|
Pages (from-to) | 737-745 |
Number of pages | 9 |
Journal | Circulation research |
Volume | 105 |
Issue number | 8 |
DOIs | |
State | Published - Oct 2009 |
Externally published | Yes |
Keywords
- Arrhythmias
- Electrophysiology
- Ion channels
- Sudden death