Carbon-mineral interactions along an earthworm invasion gradient at a Sugar Maple Forest in Northern Minnesota

Amy Lyttle, Kyungsoo Yoo, Cindy Hale, Anthony Aufdenkampe, Stephen Sebestyen

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not native species to areas previously glaciated, and the introduction of earthworms to these regions has been associated with often dramatic changes in soil structure and geochemical cycles. The authors are studying C mineral interaction along an approximately 200. m long earthworm invasion transect in a hardwood forest in northern Minnesota. This transect extends from the soils where earthworms are absent to soils that have been invaded by earthworms for nearly 30-40. years. Pre-invaded soils have an approximately 5. cm thick litter layer, thin (~5. cm) A horizon, silt rich E horizon, and clay-rich Bt horizons. The A and E horizons formed from aeolian deposits, while the clay-rich Bt horizons probably developed from underlying glacial till. With the advent of earthworm invasion, the litter layer disappears and the A horizons thicken at the expense of the O and E horizons. In addition, organic C contents in the A horizons significantly increase with the arrival of earthworms. Simultaneously, measured mineral specific surface areas suggest that minerals' capacities to complex the organic matter appear to be greater in soils with active earthworm populations. Based on the data from two end member soils along the transect, mineral specific surface areas in the A and E horizons are larger in the earthworm invaded soil than in the pre-invasion soil. Additionally, within < 5 a of earthworm invasions, A horizon materials are turned from single grain to a strong medium granular structure. While A horizon organic matter content and organic C-mineral complexation increase after earthworm invasion, they are also more vigorously mixed. This growing data set, when ultimately combined with ongoing measurements of (1) the population dynamics of earthworms along the invasion transect, (2) C-mineral association (via surface adsorption and physical collusion in mineral aggregates) and (3) dissolved organic C will show how and how much soil capacity to store C is affected by burrowing organisms, which are often the keystone species of given ecosystems.

Original languageEnglish (US)
JournalApplied Geochemistry
Volume26
Issue numberSUPPL.
DOIs
StatePublished - Jun 1 2011

Fingerprint

earthworm
Sugars
Minerals
sugar
Carbon
Soils
carbon
mineral
Biological materials
soil
Organic minerals
transect
organic matter
Specific surface area
Clay
litter
burrowing organism
surface area
Population dynamics
geochemical cycle

Cite this

Carbon-mineral interactions along an earthworm invasion gradient at a Sugar Maple Forest in Northern Minnesota. / Lyttle, Amy; Yoo, Kyungsoo; Hale, Cindy; Aufdenkampe, Anthony; Sebestyen, Stephen.

In: Applied Geochemistry, Vol. 26, No. SUPPL., 01.06.2011.

Research output: Contribution to journalArticle

Lyttle, Amy ; Yoo, Kyungsoo ; Hale, Cindy ; Aufdenkampe, Anthony ; Sebestyen, Stephen. / Carbon-mineral interactions along an earthworm invasion gradient at a Sugar Maple Forest in Northern Minnesota. In: Applied Geochemistry. 2011 ; Vol. 26, No. SUPPL.
@article{e4d1c781d1b84ef886d1a327d664e783,
title = "Carbon-mineral interactions along an earthworm invasion gradient at a Sugar Maple Forest in Northern Minnesota",
abstract = "The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not native species to areas previously glaciated, and the introduction of earthworms to these regions has been associated with often dramatic changes in soil structure and geochemical cycles. The authors are studying C mineral interaction along an approximately 200. m long earthworm invasion transect in a hardwood forest in northern Minnesota. This transect extends from the soils where earthworms are absent to soils that have been invaded by earthworms for nearly 30-40. years. Pre-invaded soils have an approximately 5. cm thick litter layer, thin (~5. cm) A horizon, silt rich E horizon, and clay-rich Bt horizons. The A and E horizons formed from aeolian deposits, while the clay-rich Bt horizons probably developed from underlying glacial till. With the advent of earthworm invasion, the litter layer disappears and the A horizons thicken at the expense of the O and E horizons. In addition, organic C contents in the A horizons significantly increase with the arrival of earthworms. Simultaneously, measured mineral specific surface areas suggest that minerals' capacities to complex the organic matter appear to be greater in soils with active earthworm populations. Based on the data from two end member soils along the transect, mineral specific surface areas in the A and E horizons are larger in the earthworm invaded soil than in the pre-invasion soil. Additionally, within < 5 a of earthworm invasions, A horizon materials are turned from single grain to a strong medium granular structure. While A horizon organic matter content and organic C-mineral complexation increase after earthworm invasion, they are also more vigorously mixed. This growing data set, when ultimately combined with ongoing measurements of (1) the population dynamics of earthworms along the invasion transect, (2) C-mineral association (via surface adsorption and physical collusion in mineral aggregates) and (3) dissolved organic C will show how and how much soil capacity to store C is affected by burrowing organisms, which are often the keystone species of given ecosystems.",
author = "Amy Lyttle and Kyungsoo Yoo and Cindy Hale and Anthony Aufdenkampe and Stephen Sebestyen",
year = "2011",
month = "6",
day = "1",
doi = "10.1016/j.apgeochem.2011.03.037",
language = "English (US)",
volume = "26",
journal = "Applied Geochemistry",
issn = "0883-2927",
publisher = "Elsevier Limited",
number = "SUPPL.",

}

TY - JOUR

T1 - Carbon-mineral interactions along an earthworm invasion gradient at a Sugar Maple Forest in Northern Minnesota

AU - Lyttle, Amy

AU - Yoo, Kyungsoo

AU - Hale, Cindy

AU - Aufdenkampe, Anthony

AU - Sebestyen, Stephen

PY - 2011/6/1

Y1 - 2011/6/1

N2 - The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not native species to areas previously glaciated, and the introduction of earthworms to these regions has been associated with often dramatic changes in soil structure and geochemical cycles. The authors are studying C mineral interaction along an approximately 200. m long earthworm invasion transect in a hardwood forest in northern Minnesota. This transect extends from the soils where earthworms are absent to soils that have been invaded by earthworms for nearly 30-40. years. Pre-invaded soils have an approximately 5. cm thick litter layer, thin (~5. cm) A horizon, silt rich E horizon, and clay-rich Bt horizons. The A and E horizons formed from aeolian deposits, while the clay-rich Bt horizons probably developed from underlying glacial till. With the advent of earthworm invasion, the litter layer disappears and the A horizons thicken at the expense of the O and E horizons. In addition, organic C contents in the A horizons significantly increase with the arrival of earthworms. Simultaneously, measured mineral specific surface areas suggest that minerals' capacities to complex the organic matter appear to be greater in soils with active earthworm populations. Based on the data from two end member soils along the transect, mineral specific surface areas in the A and E horizons are larger in the earthworm invaded soil than in the pre-invasion soil. Additionally, within < 5 a of earthworm invasions, A horizon materials are turned from single grain to a strong medium granular structure. While A horizon organic matter content and organic C-mineral complexation increase after earthworm invasion, they are also more vigorously mixed. This growing data set, when ultimately combined with ongoing measurements of (1) the population dynamics of earthworms along the invasion transect, (2) C-mineral association (via surface adsorption and physical collusion in mineral aggregates) and (3) dissolved organic C will show how and how much soil capacity to store C is affected by burrowing organisms, which are often the keystone species of given ecosystems.

AB - The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not native species to areas previously glaciated, and the introduction of earthworms to these regions has been associated with often dramatic changes in soil structure and geochemical cycles. The authors are studying C mineral interaction along an approximately 200. m long earthworm invasion transect in a hardwood forest in northern Minnesota. This transect extends from the soils where earthworms are absent to soils that have been invaded by earthworms for nearly 30-40. years. Pre-invaded soils have an approximately 5. cm thick litter layer, thin (~5. cm) A horizon, silt rich E horizon, and clay-rich Bt horizons. The A and E horizons formed from aeolian deposits, while the clay-rich Bt horizons probably developed from underlying glacial till. With the advent of earthworm invasion, the litter layer disappears and the A horizons thicken at the expense of the O and E horizons. In addition, organic C contents in the A horizons significantly increase with the arrival of earthworms. Simultaneously, measured mineral specific surface areas suggest that minerals' capacities to complex the organic matter appear to be greater in soils with active earthworm populations. Based on the data from two end member soils along the transect, mineral specific surface areas in the A and E horizons are larger in the earthworm invaded soil than in the pre-invasion soil. Additionally, within < 5 a of earthworm invasions, A horizon materials are turned from single grain to a strong medium granular structure. While A horizon organic matter content and organic C-mineral complexation increase after earthworm invasion, they are also more vigorously mixed. This growing data set, when ultimately combined with ongoing measurements of (1) the population dynamics of earthworms along the invasion transect, (2) C-mineral association (via surface adsorption and physical collusion in mineral aggregates) and (3) dissolved organic C will show how and how much soil capacity to store C is affected by burrowing organisms, which are often the keystone species of given ecosystems.

UR - http://www.scopus.com/inward/record.url?scp=79955964876&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955964876&partnerID=8YFLogxK

U2 - 10.1016/j.apgeochem.2011.03.037

DO - 10.1016/j.apgeochem.2011.03.037

M3 - Article

AN - SCOPUS:79955964876

VL - 26

JO - Applied Geochemistry

JF - Applied Geochemistry

SN - 0883-2927

IS - SUPPL.

ER -