TY - JOUR
T1 - Carbon, hydrogen, and nitrogen isotope fractionation associated with oxidative transformation of substituted aromatic N-alkyl amines
AU - Skarpeli-Liati, Marita
AU - Pati, Sarah G.
AU - Bolotin, Jakov
AU - Eustis, Soren N.
AU - Hofstetter, Thomas B.
PY - 2012/7/3
Y1 - 2012/7/3
N2 - We investigated the mechanisms and isotope effects associated with the N-dealkylation and N-atom oxidation of substituted N-methyl- and N,N-dimethylanilines to identify isotope fractionation trends for the assessment of oxidations of aromatic N-alkyl moieties by compound-specific isotope analysis (CSIA). In laboratory batch model systems, we determined the C, H, and N isotope enrichment factors for the oxidation by MnO2 and horseradish peroxidase (HRP), derived apparent 13C-, 2H-, and 15N-kinetic isotope effects (AKIEs), and characterized reaction products. The N-atom oxidation pathway leading to radical coupling products typically exhibited inverse 15N-AKIEs (up to 0.991) and only minor 13C- and 2H-AKIEs. Oxidative N-dealkylation, in contrast, was subject to large normal 13C- and 2H-AKIEs (up to 1.019 and 3.1, respectively) and small 15N-AKIEs. Subtle changes of the compound's electronic properties due to different types of aromatic and/or N-alkyl substituents resulted in changes of reaction mechanisms, rate-limiting step(s), and thus isotope fractionation trends. The complex sequence of electron and proton transfers during the oxidative transformation of substituted aromatic N-alkyl amines suggests highly compound- and mechanism-dependent isotope effects precluding extrapolations to other organic micropollutants reacting along the same degradation pathways.
AB - We investigated the mechanisms and isotope effects associated with the N-dealkylation and N-atom oxidation of substituted N-methyl- and N,N-dimethylanilines to identify isotope fractionation trends for the assessment of oxidations of aromatic N-alkyl moieties by compound-specific isotope analysis (CSIA). In laboratory batch model systems, we determined the C, H, and N isotope enrichment factors for the oxidation by MnO2 and horseradish peroxidase (HRP), derived apparent 13C-, 2H-, and 15N-kinetic isotope effects (AKIEs), and characterized reaction products. The N-atom oxidation pathway leading to radical coupling products typically exhibited inverse 15N-AKIEs (up to 0.991) and only minor 13C- and 2H-AKIEs. Oxidative N-dealkylation, in contrast, was subject to large normal 13C- and 2H-AKIEs (up to 1.019 and 3.1, respectively) and small 15N-AKIEs. Subtle changes of the compound's electronic properties due to different types of aromatic and/or N-alkyl substituents resulted in changes of reaction mechanisms, rate-limiting step(s), and thus isotope fractionation trends. The complex sequence of electron and proton transfers during the oxidative transformation of substituted aromatic N-alkyl amines suggests highly compound- and mechanism-dependent isotope effects precluding extrapolations to other organic micropollutants reacting along the same degradation pathways.
UR - http://www.scopus.com/inward/record.url?scp=84863503953&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863503953&partnerID=8YFLogxK
U2 - 10.1021/es300819v
DO - 10.1021/es300819v
M3 - Article
C2 - 22681573
AN - SCOPUS:84863503953
SN - 0013-936X
VL - 46
SP - 7189
EP - 7198
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 13
ER -