Cannabinoids attenuate depolarization-dependent Ca2+ influx in intermediate-size primary afferent neurons of adult rats

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


CB1 receptors have been localized to primary afferent neurons, but little is known about the direct effect of cannabinoids on these neurons. The depolarization-evoked increase in the concentration of free intracellular calcium ([Ca2+]i), measured by microfluorimetry, was used as a bioassay for the effect of cannabinoids on isolated, adult rat primary afferent neurons 20-28 h after dissociation of dorsal root ganglia. Cannabinoid agonists CP 55,940 (100 nM) and WIN 55,212-2 (1 μM) had no effect on the mean K+-evoked increase in [Ca2+]i in neurons with a somal area<800 μm2, but the ligands attenuated the evoked increase in [Ca2+]i by 35% in neurons defined as intermediate in size (800-1500 μm2). The effects of CP 55,940 and WIN 55,212-2 were mediated by the CB1 receptor on the basis of relative effective concentrations, blockade by the CB1 receptor antagonist SR141716A and lack of effect of WIN 55,212-3. Intermediate-size neurons rarely responded to capsaicin (100 nM). Although cannabinoid agonists generally did not inhibit depolarization-evoked increases in [Ca2+]i in small neurons, immunocytochemical studies indicated that CB1 receptor-immunoreactivity occurred in this population. CB1 receptor-immunoreactive neurons ranged in size from 227 to 2995 μm2 (mean somal area of 1044 μm2). In double labeling studies, CB1 receptor-immunoreactivity co-localized with labeling for calcitonin gene-related peptide and RT97, a marker for myelination, in some primary afferent neurons. The decrease in evoked Ca2+ influx indicates that cannabinoids decrease conductance through voltage-dependent calcium channels in a subpopulation of primary afferent neurons. Modulation of calcium channels is one mechanism by which cannabinoids may decrease transmitter release from primary afferent neurons. An effect on voltage-dependent calcium channels, however, represents only one possible effect of cannabinoids on primary afferent neurons. Identifying the mechanisms by which cannabinoids modulate nociceptive neurons will increase our understanding of how cannabinoids produce anti-nociception in normal animals and animals with tissue injury.

Original languageEnglish (US)
Pages (from-to)613-625
Number of pages13
Issue number2
StatePublished - Dec 20 2002

Bibliographical note

Funding Information:
The authors are grateful to Catherine Satterfield for her assistance in the analysis of immunostained material and to Drs. Chris Honda and Stan Thayer for their critical comments during preparation of the manuscript. These studies were supported by a grant from the National Institute of Drug Abuse (DA11471 to D.A.S.).


  • CB1 receptor
  • Calcitonin gene-related peptide
  • Dorsal root ganglion
  • RT97


Dive into the research topics of 'Cannabinoids attenuate depolarization-dependent Ca2+ influx in intermediate-size primary afferent neurons of adult rats'. Together they form a unique fingerprint.

Cite this