Abstract
The recent discovery of the putative 125 GeV Higgs boson has motivated a number of attempts to reconcile its relatively large mass with the predictions of the minimal supersymmetric standard model (MSSM). Some approaches invoked large trilinear supersymmetry breaking terms At between stops and one of the elementary Higgs fields. We consider the possibility that electroweak symmetry breaking may be triggered by supersymmetry breaking with a large At, large enough to generate a composite field with the same quantum numbers as the Higgs boson and with a non-vanishing vacuum expectation value. In the resulting vacuum, the usual relation between the gauge couplings and the Higgs self-coupling does not apply, and there is no reason to expect the same upper bound on the mass of the lightest Higgs boson. In a simple model where the bound state is assumed to have no mixing with the other fields, we calculate the critical coupling At necessary for symmetry breaking using the lowest-order Bethe-Salpeter (BS) equation. Study of the BS equation is complicated by the structure of its lowest-order kernel, which is a crossed box graph, but we find an accurate approximation to its solution. In a realistic model, the mixing of the bound state with the fundamental Higgs boson creates a symmetry-breaking seesaw. We outline the steps toward a realistic model.
Original language | English (US) |
---|---|
Pages (from-to) | 951-956 |
Number of pages | 6 |
Journal | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Volume | 718 |
Issue number | 3 |
DOIs | |
State | Published - Jan 8 2013 |
Bibliographical note
Funding Information:We thank T.T. Yanagida for stimulating discussions and for many valuable comments. This work was supported in part by DOE Grant DE-FG03-91ER40662 . A.K. appreciates support of World Premier International Research Center Initiative, MEXT, Japan , as well as hospitality of the Aspen Center for Physics, which is supported by the NSF Grant No. PHY-1066293 .