Can pulpal floor debonding be detected from occlusal surface displacement in composite restorations?

João Batista Novaes, Elissa Talma, Estevam Barbosa Las Casas, Wondwosen Aregawi, Lauren Wickham Kolstad, Sue Mantell, Yan Wang, Alex Fok

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Objectives Polymerization shrinkage of resin composite restorations can cause debonding at the tooth–restoration interface. Theory based on the mechanics of materials predicts that debonding at the pulpal floor would half the shrinkage displacement at the occlusal surface. The aim of this study is to test this theory and to examine the possibility of detecting subsurface resin composite restoration debonding by measuring the superficial shrinkage displacements. Methods A commercial dental resin composite with linear shrinkage strain of 0.8% was used to restore 2 groups of 5 model Class-II cavities (8-mm long, 4-mm wide and 4-mm deep) in aluminum blocks (8-mm thick, 10-mm wide and 14-mm tall). Group I had the restorations bonded to all cavity surfaces, while Group II had the restorations not bonded to the cavity floor to simulate debonding. One of the proximal surfaces of each specimen was sprayed with fine carbon powder to allow surface displacement measurement by Digital Image Correlation. Images of the speckled surface were taken before and after cure for displacement calculation. The experiment was simulated using finite element analysis (FEA) for comparison. Results Group I showed a maximum occlusal displacement of 34.7 ± 6.7 μm and a center of contraction (COC) near the pulpal floor. Group II had a COC coinciding with the geometric center and showed a maximum occlusal displacement of 17.4 ± 3.8 μm. The difference between the two groups was statistically significant (p-value = 0.0007). Similar results were obtained by FEA. The theoretical shrinkage displacement was 44.6 and 22.3 μm for Group I and II, respectively. The lower experimental displacements were probably caused by slumping of the resin composite before cure and deformation of the adhesive layer. Significance The results confirmed that the occlusal shrinkage displacement of a resin composite restoration was reduced significantly by pulpal floor debonding. Recent in vitro studies seem to indicate that this reduction in shrinkage displacement could be detected by using the most accurate intraoral scanners currently available. Thus, subject to clinical validation, the occlusal displacement of a resin composite restoration may be used to assess its interfacial integrity.

Original languageEnglish (US)
Pages (from-to)161-169
Number of pages9
JournalDental Materials
Volume34
Issue number1
DOIs
StatePublished - Jan 2018

Bibliographical note

Funding Information:
The authors would like to thank 3M OCSD for providing the materials used in this study. João Batista Novaes Júnior would like to thank the Brazilian Research Agency – CNPq – for the support through their postdoctoral scholarships program number 200934/2014-7. Yan Wang and Alex Fok would like to thank the National Natural Science Foundation of China (NSFC) for their financial support through grant number 81628005.

Publisher Copyright:
© 2017 The Academy of Dental Materials

Keywords

  • Debonding
  • Dental restoration
  • Intraoral scanner
  • Polymerization shrinkage
  • Resin composite

Fingerprint

Dive into the research topics of 'Can pulpal floor debonding be detected from occlusal surface displacement in composite restorations?'. Together they form a unique fingerprint.

Cite this