Can interest rate volatility be extracted from the cross section of bond yields?

Pierre Collin-Dufresne, Robert S. Goldstein, Christopher S. Jones

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Most affine models of the term structure with stochastic volatility predict that the variance of the short rate should play a 'dual role' in that it should also equal a linear combination of yields. However, we find that estimation of a standard affine three-factor model results in a variance state variable that, while instrumental in explaining the shape of the yield curve, is essentially unrelated to GARCH estimates of the quadratic variation of the spot rate process or to implied variances from options. We then investigate four-factor affine models. Of the models tested, only the model that exhibits 'unspanned stochastic volatility' (USV) generates both realistic short rate volatility estimates and a good cross-sectional fit. Our findings suggest that short rate volatility cannot be extracted from the cross-section of bond prices. In particular, short rate volatility and convexity are only weakly correlated.

Original languageEnglish (US)
Pages (from-to)47-66
Number of pages20
JournalJournal of Financial Economics
Volume94
Issue number1
DOIs
StatePublished - Oct 2009

Keywords

  • Affine models
  • Stochastic volatility
  • Term structure of interest rates

Fingerprint

Dive into the research topics of 'Can interest rate volatility be extracted from the cross section of bond yields?'. Together they form a unique fingerprint.

Cite this