Calibration and data-analysis routines for nanoindentation with spherical tips

Diana Avadanii, Anna Kareer, Lars Hansen, Angus Wilkinson

Research output: Contribution to journalArticlepeer-review

Abstract

Abstract: Instrumented spherical nanoindentation with a continuous stiffness measurement has gained increased popularity in microphysical investigations of grain boundaries, twins, dislocation densities, ion-induced damage, and more. These studies rely on different methodologies for instrument and tip calibration. Here, we test, integrate, and re-adapt published strategies for tip and machine-stiffness calibration for spherical tips. We propose a routine for independently calibrating the effective tip radius and the machine stiffness using standard reference materials, which requires the parametrization of the effective radius as a function of load. We validate our proposed workflow against key benchmarks and apply the resulting calibrations to data collected in materials with varying ductility to extract indentation stress–strain curves. We also test the impact of the machine stiffness on recently proposed methods for identification of yield stress. Finally, we synthesize these analyses in a single workflow for use in future studies aiming to extract and process data from spherical nanoindentation. Graphic abstract: [Figure not available: see fulltext.]

Original languageEnglish (US)
Pages (from-to)4042-4056
Number of pages15
JournalJournal of Materials Research
Volume38
Issue number17
DOIs
StatePublished - Sep 14 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

Keywords

  • Machine stiffness
  • Spherical nanoindentation
  • Stress–strain curves
  • Tip calibration

Fingerprint

Dive into the research topics of 'Calibration and data-analysis routines for nanoindentation with spherical tips'. Together they form a unique fingerprint.

Cite this