TY - JOUR
T1 - Calculation of heats of formation for Zn complexes
T2 - Comparison of density functional theory, second order perturbation theory, coupled-cluster and complete active space methods
AU - Weaver, Michael N.
AU - Merz, Kenneth M.
AU - Ma, Dongxia
AU - Kim, Hyun Jung
AU - Gagliardi, Laura
PY - 2013/12/10
Y1 - 2013/12/10
N2 - Heats of formation were predicted for nine ZnX complexes (X = Zn, H, O, F2, S, Cl, Cl2, CH3, (CH3) 2) using 14 density functionals, MP2 calculations, and the CCSD and CCSD(T) coupled-cluster methods. Calculations utilized the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Heats of formation were most accurately predicted by the TPSSTPSS and TPSSKCIS density functionals, and the BLYP, B3LYP, MP2, CCSD, and CCSD(T) levels were among the poorest performing methods based on accuracy. A wide range of Zn2 equilibrium bond distances were predicted, indicating that many of the studied levels of theory may be unable to adequately describe this transition metal dimer. To further benchmark the accuracy of the density functional methods, high-level CASSCF and CASPT2 calculations were performed to estimate bond dissociation energies, equilibrium bond lengths, and heats of formation for the diatomic Zn complexes, and the latter two quantities were compared with the results of DFT, MP2, and coupled-cluster calculations as well as experimental values.
AB - Heats of formation were predicted for nine ZnX complexes (X = Zn, H, O, F2, S, Cl, Cl2, CH3, (CH3) 2) using 14 density functionals, MP2 calculations, and the CCSD and CCSD(T) coupled-cluster methods. Calculations utilized the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Heats of formation were most accurately predicted by the TPSSTPSS and TPSSKCIS density functionals, and the BLYP, B3LYP, MP2, CCSD, and CCSD(T) levels were among the poorest performing methods based on accuracy. A wide range of Zn2 equilibrium bond distances were predicted, indicating that many of the studied levels of theory may be unable to adequately describe this transition metal dimer. To further benchmark the accuracy of the density functional methods, high-level CASSCF and CASPT2 calculations were performed to estimate bond dissociation energies, equilibrium bond lengths, and heats of formation for the diatomic Zn complexes, and the latter two quantities were compared with the results of DFT, MP2, and coupled-cluster calculations as well as experimental values.
UR - http://www.scopus.com/inward/record.url?scp=84890500768&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890500768&partnerID=8YFLogxK
U2 - 10.1021/ct400856g
DO - 10.1021/ct400856g
M3 - Article
AN - SCOPUS:84890500768
SN - 1549-9618
VL - 9
SP - 5277
EP - 5285
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 12
ER -