Bulk tank somatic cell counts analyzed by statistical process control tools to identify and monitor subclinical mastitis incidence

J. M. Lukas, D. M. Hawkins, M. L. Kinsel, J. K. Reneau

Research output: Contribution to journalArticle

23 Scopus citations

Abstract

The objective of this study was to examine the relationship between monthly Dairy Herd Improvement (DHI) subclinical mastitis and new infection rate estimates and daily bulk tank somatic cell count (SCC) summarized by statistical process control tools. Dairy Herd Improvement Association test-day subclinical mastitis and new infection rate estimates along with daily or every other day bulk tank SCC data were collected for 12 mo of 2003 from 275 Upper Midwest dairy herds. Herds were divided into 5 herd production categories. A linear score [LNS = ln(BTSCC/100,000)/0.693147 + 3] was calculated for each individual bulk tank SCC. For both the raw SCC and the transformed data, the mean and sigma were calculated using the statistical quality control individual measurement and moving range chart procedure of Statistical Analysis System. One hundred eighty-three herds of the 275 herds from the study data set were then randomly selected and the raw (method 1) and transformed (method 2) bulk tank SCC mean and sigma were used to develop models for predicting subclinical mastitis and new infection rate estimates. Herd production category was also included in all models as 5 dummy variables. Models were validated by calculating estimates of subclinical mastitis and new infection rates for the remaining 92 herds and plotting them against observed values of each of the dependents. Only herd production category and bulk tank SCC mean were significant and remained in the final models. High R2 values (0.83 and 0.81 for methods 1 and 2, respectively) indicated a strong correlation between the bulk tank SCC and herd's subclinical mastitis prevalence. The standard errors of the estimate were 4.02 and 4.28% for methods 1 and 2, respectively, and decreased with increasing herd production. As a case study, Shewhart Individual Measurement Charts were plotted from the bulk tank SCC to identify shifts in mastitis incidence. Four of 5 charts examined signaled a change in bulk tank SCC before the DHI test day identified the change in subclinical mastitis prevalence. It can be concluded that applying statistical process control tools to daily bulk tank SCC can be used to estimate subclinical mastitis prevalence in the herd and observe for change in the subclinical mastitis status. Single DHI test day estimates of new infection rate were insufficient to accurately describe its dynamics.

Original languageEnglish (US)
Pages (from-to)3944-3952
Number of pages9
JournalJournal of Dairy Science
Volume88
Issue number11
DOIs
StatePublished - Nov 2005

Keywords

  • Bulk tank somatic cell count
  • Mastitis prevalence
  • Statistical process control

Fingerprint Dive into the research topics of 'Bulk tank somatic cell counts analyzed by statistical process control tools to identify and monitor subclinical mastitis incidence'. Together they form a unique fingerprint.

  • Cite this