Building autocorrelation-aware representations for fine-scale spatiotemporal prediction

Yijun Lin, Yao Yi Chiang, Meredith Franklin, Sandrah P. Eckel, Jose Luis Ambite

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Many scientific prediction problems have spatiotemporal data- and modeling-related challenges in handling complex variations in space and time using only sparse and unevenly distributed observations. This paper presents a novel deep learning architecture, Deep learning predictions for LocATion-dependent Time-sEries data (DeepLATTE), that explicitly incorporates theories of spatial statistics into neural networks to addresses these challenges. In addition to a feature selection module and a spatiotemporal learning module, DeepLATTE contains an autocorrelation-guided semi-supervised learning strategy to enforce both local autocorrelation patterns and global autocorrelation trends of the predictions in the learned spatiotemporal embedding space to be consistent with the observed data, overcoming the limitation of sparse and unevenly distributed observations. During the training process, both supervised and semi-supervised losses guide the updates of the entire network to: 1) prevent overfitting, 2) refine feature selection, 3) learn useful spatiotemporal representations, and 4) improve overall prediction. We conduct a demonstration of DeepLATTE using publicly available data for an important public health topic, air quality prediction, in a well-studied, complex physical environment - Los Angeles. The experiment demonstrates that the proposed approach provides accurate fine-spatial-scale air quality predictions and reveals the critical environmental factors affecting the results.

Original languageEnglish (US)
Title of host publicationProceedings - 20th IEEE International Conference on Data Mining, ICDM 2020
EditorsClaudia Plant, Haixun Wang, Alfredo Cuzzocrea, Carlo Zaniolo, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages352-361
Number of pages10
ISBN (Electronic)9781728183169
DOIs
StatePublished - Nov 2020
Externally publishedYes
Event20th IEEE International Conference on Data Mining, ICDM 2020 - Virtual, Sorrento, Italy
Duration: Nov 17 2020Nov 20 2020

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2020-November
ISSN (Print)1550-4786

Conference

Conference20th IEEE International Conference on Data Mining, ICDM 2020
Country/TerritoryItaly
CityVirtual, Sorrento
Period11/17/2011/20/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • Air Quality
  • Autocorrelation
  • Fine-Scale Prediction
  • Spatiotemporal

Fingerprint

Dive into the research topics of 'Building autocorrelation-aware representations for fine-scale spatiotemporal prediction'. Together they form a unique fingerprint.

Cite this