Breast tumor kinase and extracellular signal-regulated kinase 5 mediate Met receptor signaling to cell migration in breast cancer cells

Nancy E. Castro, Carol A. Lange

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Introduction: Breast tumor kinase (Brk/protein tyrosine kinase 6 (PTK6)) is a nonreceptor, soluble tyrosine kinase overexpressed in the majority of breast tumors. Previous work has placed Brk downstream of epidermal growth factor receptor (ErbB) activation and upstream of extracellular signal-regulated kinase 5 (ERK5) and p38 mitogen-activated protein (MAP) kinases. Herein we investigate the regulation of Brk kinase activity and cell migration in response to treatment of keratinocytes (HaCaT cells) and breast cancer cell lines (MDA-MB-231 and T47D cells) with hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), peptide ligands for Met and Ron receptors, respectively.Methods: In vitro kinase assays were performed to directly measure Brk kinase activity in response to MET and RON ligands. Transfection of Brk-targeted RNAi was used to knock down endogenous Brk or ERK5 in multiple cell lines. Kinase activities (downstream of MET signaling) were assayed by Western blotting using total and phospho-specific antibodies. Boyden chamber assays were used to measure cell migration in response to manipulation of Brk and downstream MET effectors. Rescue experiments were performed by knock down of endogenous Brk using RNAi (targeting the untranslated region (3'-UTR)) and transient transfection (re-expression) of either wild-type or kinase-inactive Brk.Results: Brk gene silencing revealed that HGF, but not MSP, induced robust Brk-dependent cell migration. Brk and ERK5 copurified in HGF-induced protein complexes, and Brk/ERK5 complexes formed independently of Brk kinase activity. ERK5 was required for breast cancer cell but not keratinocyte cell migration, which became ERK1/2-dependent upon ERK5 knockdown. Notably, rescue experiments indicated that the kinase activity of Brk was not required for HGF-induced cell migration. Further, expression of either wild-type or kinase-inactive Brk in Brk-null MDA-MB-435 cells activated ERK5 and conferred increased HGF-induced cell migration.Conclusions: These results have identified Brk and ERK5 as important downstream effectors of Met signaling to cell migration. Targeting ERK5 kinase activity or inhibiting the formation of Brk/ERK5 complexes may provide an additional means of blocking cell migration associated with breast cancer progression to metastasis.

Original languageEnglish (US)
Article numberR60
JournalBreast Cancer Research
Volume12
Issue number4
DOIs
StatePublished - Aug 5 2010

Bibliographical note

Funding Information:
We gratefully acknowledge Elizabeth Wattenberg (University of Minnesota School of Public Health) for her generous gift of the HaCaT keratinocyte cell line, Deepali Sachdev (University of Minnesota Department of Medicine) for kindly providing us with MDA-MB-231 cells and Stephane Richard (McGill University, Montreal, Quebec, Canada) for providing us with the GST-Sam68 construct. We also thank Daniel Fitzsimmons (University of Illinois at Urbana-Champaign, Urbana, IL) for the preparation of purified recombinant Sam68. This work was supported by ACS no. RSG TBE-107800 (to CAL), grant R01 CA107547-01A1 (to CAL), and University of Minnesota Cancer Center Training grant CA009138 (to NEC).

Fingerprint

Dive into the research topics of 'Breast tumor kinase and extracellular signal-regulated kinase 5 mediate Met receptor signaling to cell migration in breast cancer cells'. Together they form a unique fingerprint.

Cite this