Bounding causal effects under uncontrolled confounding using counterfactuals

Richard F. MacLehose, Sol Kaufman, Jay S. Kaufman, Charles Poole

Research output: Contribution to journalReview article

39 Scopus citations

Abstract

Common sensitivity analysis methods for unmeasured confounders provide a corrected point estimate of causal effect for each specified set of unknown parameter values. This article reviews alternative methods for generating deterministic nonparametric bounds on the magnitude of the causal effect using linear programming methods and potential outcomes models. The bounds are generated using only the observed table. We then demonstrate how these bound widths may be reduced through assumptions regarding the potential outcomes under various exposure regimens. We illustrate this linear programming approach using data from the Cooperative Cardiovascular Project. These bounds on causal effect under uncontrolled confounding complement standard sensitivity analyses by providing a range within which the causal effect must lie given the validity of the assumptions.

Original languageEnglish (US)
Pages (from-to)548-555
Number of pages8
JournalEpidemiology
Volume16
Issue number4
DOIs
StatePublished - Jul 1 2005

Fingerprint Dive into the research topics of 'Bounding causal effects under uncontrolled confounding using counterfactuals'. Together they form a unique fingerprint.

  • Cite this