Abstract
A classical result of Cheng states that the bottom spectrum of complete manifolds of fixed dimension and Ricci curvature lower bound achieves its maximal value on the corresponding hyperbolic space. The paper establishes an analogous result for three-dimensional complete manifolds with scalar curvature lower bound subject to some necessary topological assumptions. The rigidity issue is also addressed and a splitting theorem is obtained for such manifolds with the maximal bottom spectrum.
Original language | English (US) |
---|---|
Article number | 110457 |
Journal | Journal of Functional Analysis |
Volume | 287 |
Issue number | 2 |
DOIs | |
State | Published - Jul 15 2024 |
Bibliographical note
Publisher Copyright:© 2024 Elsevier Inc.
Keywords
- Green's function
- Scalar curvature
- Spectrum