Bone-Inspired Bending Soft Robot

Saeed Hashemi, Darrin Bentivegna, William Durfee

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Bending soft robots must be structured and predictable to be used in applications such as a grasping hand. We developed soft robot fingers with embedded bones to improve the performance of a puppetry robot with haptic feedback. The manufacturing process for bone-inspired soft robots is described, and two mathematical models are reported: one to predict the stiffness and natural frequency of the robot finger and the other for trajectory planning. Experiments using different prototypes were used to set model parameters. The first model, which had a fourth-order lumped mass-spring-damper configuration, was able to predict the natural frequency of the soft robot with a maximum error of 18%. The model and the experimental data demonstrated that bone-inspired soft robots have higher natural frequency, lower phase shift, better controllability, and higher stiffness compared with traditional fiber-reinforced bending soft robots. We also showed that the dynamic performance of a bending soft robot is independent of whether water or air is used for the media and independent of the media pressure. Results from the second model showed that the path of a bone-inspired soft robot is a function of the relative lengths of the bone segments, which means that the model can be used to direct the design of the robot to achieve the desired trajectory. This model was able to correctly predict the trajectory path of the robot.

Original languageEnglish (US)
Pages (from-to)387-396
Number of pages10
JournalSoft Robotics
Issue number4
StatePublished - Aug 1 2021

Bibliographical note

Funding Information:
Funding was provided by Disney Research Pittsburgh and the National Institutes of Health (NIH), grant number 5-R01EB019834-03.

Publisher Copyright:
© Copyright 2021, Mary Ann Liebert, Inc., publishers 2021.


  • bone-inspired soft robot
  • fiber-reinforced bending soft robot
  • grasping hand
  • puppeteering

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural


Dive into the research topics of 'Bone-Inspired Bending Soft Robot'. Together they form a unique fingerprint.

Cite this