Blueshift or redshift? Effect of hydrogen bonding interactions on the C≡N stretching frequency of 5-cyanoindole

Yuyao Yang, Ruoqi Zhao, Wenkai Zhang, Jiali Gao, Feng Gai

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The nitrile (C≡N) stretching vibration is widely used as a site-specific environmental probe of proteins and, as such, many computational studies have been used to investigate the factors that affect its frequency (νCN). These studies, most of which were carried out in the ground electronic state of the molecule of interest, revealed that the formation of a normal or linear hydrogen bond (H-bond) with the nitrile group results in a blueshift in its νCN. Recently, however, several experimental studies showed that for certain aromatic nitriles, solvent relaxations in their excited electronic state(s) induce a redshift (blueshift) in νCN in protic (aprotic) solvents, suggesting that the effect of hydrogen-bonding (H-bonding) interactions on νCN may depend on the electronic state of the molecule. To test this possibility, herein we combine molecular dynamics simulations and quantum mechanical calculations to assess the effect of H-bonding interactions on the νCN of 5-cyanoindole (5-CNI) in its different electronic states. We find that its C≡N group can form either one H-bond (single-H-bond) or two H-bonds (d-H-bonds) with the solvent molecules and that in the ground electronic state, a single-H-bond can lead νCN to shift either to a higher or lower frequency, depending on its angle, which is consistent with previous studies, whereas the d-H-bonds cause νCN to redshift. However, in its lowest-lying excited electronic state (i.e., S1), which has the characteristics of a charge-transfer state, all H-bonds induce a redshift in νCN, with the d-H-bonds being most effective in this regard.

Original languageEnglish (US)
Article number124310
JournalJournal of Chemical Physics
Volume161
Issue number12
DOIs
StatePublished - Sep 28 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 Author(s).

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Blueshift or redshift? Effect of hydrogen bonding interactions on the C≡N stretching frequency of 5-cyanoindole'. Together they form a unique fingerprint.

Cite this