TY - JOUR
T1 - Blueshift or redshift? Effect of hydrogen bonding interactions on the C≡N stretching frequency of 5-cyanoindole
AU - Yang, Yuyao
AU - Zhao, Ruoqi
AU - Zhang, Wenkai
AU - Gao, Jiali
AU - Gai, Feng
N1 - Publisher Copyright:
© 2024 Author(s).
PY - 2024/9/28
Y1 - 2024/9/28
N2 - The nitrile (C≡N) stretching vibration is widely used as a site-specific environmental probe of proteins and, as such, many computational studies have been used to investigate the factors that affect its frequency (νCN). These studies, most of which were carried out in the ground electronic state of the molecule of interest, revealed that the formation of a normal or linear hydrogen bond (H-bond) with the nitrile group results in a blueshift in its νCN. Recently, however, several experimental studies showed that for certain aromatic nitriles, solvent relaxations in their excited electronic state(s) induce a redshift (blueshift) in νCN in protic (aprotic) solvents, suggesting that the effect of hydrogen-bonding (H-bonding) interactions on νCN may depend on the electronic state of the molecule. To test this possibility, herein we combine molecular dynamics simulations and quantum mechanical calculations to assess the effect of H-bonding interactions on the νCN of 5-cyanoindole (5-CNI) in its different electronic states. We find that its C≡N group can form either one H-bond (single-H-bond) or two H-bonds (d-H-bonds) with the solvent molecules and that in the ground electronic state, a single-H-bond can lead νCN to shift either to a higher or lower frequency, depending on its angle, which is consistent with previous studies, whereas the d-H-bonds cause νCN to redshift. However, in its lowest-lying excited electronic state (i.e., S1), which has the characteristics of a charge-transfer state, all H-bonds induce a redshift in νCN, with the d-H-bonds being most effective in this regard.
AB - The nitrile (C≡N) stretching vibration is widely used as a site-specific environmental probe of proteins and, as such, many computational studies have been used to investigate the factors that affect its frequency (νCN). These studies, most of which were carried out in the ground electronic state of the molecule of interest, revealed that the formation of a normal or linear hydrogen bond (H-bond) with the nitrile group results in a blueshift in its νCN. Recently, however, several experimental studies showed that for certain aromatic nitriles, solvent relaxations in their excited electronic state(s) induce a redshift (blueshift) in νCN in protic (aprotic) solvents, suggesting that the effect of hydrogen-bonding (H-bonding) interactions on νCN may depend on the electronic state of the molecule. To test this possibility, herein we combine molecular dynamics simulations and quantum mechanical calculations to assess the effect of H-bonding interactions on the νCN of 5-cyanoindole (5-CNI) in its different electronic states. We find that its C≡N group can form either one H-bond (single-H-bond) or two H-bonds (d-H-bonds) with the solvent molecules and that in the ground electronic state, a single-H-bond can lead νCN to shift either to a higher or lower frequency, depending on its angle, which is consistent with previous studies, whereas the d-H-bonds cause νCN to redshift. However, in its lowest-lying excited electronic state (i.e., S1), which has the characteristics of a charge-transfer state, all H-bonds induce a redshift in νCN, with the d-H-bonds being most effective in this regard.
UR - http://www.scopus.com/inward/record.url?scp=85205276028&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205276028&partnerID=8YFLogxK
U2 - 10.1063/5.0228319
DO - 10.1063/5.0228319
M3 - Article
C2 - 39329306
AN - SCOPUS:85205276028
SN - 0021-9606
VL - 161
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 12
M1 - 124310
ER -