Black phosphorus n-MOSFETs with record transconductance

Nazila Haratipour, Matthew C. Robbins, Steven J. Koester

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


Two-dimensional (2D) materials have attracted a great deal of attention for use in a variety of electronic and photonic applications. The layered crystal structure in these materials offers an ultra-thin or even monolayer body thickness, which could reduce short channel effects allowing improved transistor scaling compared to conventional bulk materials. In order to use these 2D materials in complementary logic circuits, it would be desirable to have high performance p-FETs and n-FETs made using the same semiconductor channel. Transition metal dichalcogenides (TMDs) are the most widely studied 2D materials and inverters based on these materials have already been reported [1-3]. Although these inverters show high voltage gain, their performance is eventually limited by the low mobility in these materials. Recently, the 2D material black phosphorus (BP) has been studied which promises improved performance due to its high electron and hole mobility and thickness-dependent band gap [4-7]. However, black phosphorus tends to be naturally p-type, and while high-performance BP p-FETs have been demonstrated [6-9], achieving high-performance n-FETs has proven to be difficult [10]. In this work, we report Al2O3-passivated black phosphorus n-FETs with record transconductance of 45 μS/μm, a value that is over 10 times higher than the previous best values [10]. These result suggest strong evidence that black phosphorus is a promising material for 2D CMOS applications.

Original languageEnglish (US)
Title of host publication73rd Annual Device Research Conference, DRC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages2
ISBN (Electronic)9781467381345
StatePublished - Aug 3 2015
Event73rd Annual Device Research Conference, DRC 2015 - Columbus, United States
Duration: Jun 21 2015Jun 24 2015

Publication series

NameDevice Research Conference - Conference Digest, DRC
ISSN (Print)1548-3770


Conference73rd Annual Device Research Conference, DRC 2015
Country/TerritoryUnited States

Bibliographical note

Funding Information:
The work was supported by the University of Minnesota MRSEC under Award DMR- 1420013. Portions of this work were carried out in the UMN Characterization Facility which receives partial support om NSF through the MRSEC program.


  • Crystals
  • Field effect transistors
  • Logic gates
  • Passivation
  • Silicon
  • Transconductance

MRSEC Support

  • Primary


Dive into the research topics of 'Black phosphorus n-MOSFETs with record transconductance'. Together they form a unique fingerprint.

Cite this