TY - JOUR
T1 - Bipolar diffusion charging of aggregates
AU - Xiao, Kai
AU - Swanson, Jacob J.
AU - Pui, David Y
AU - Kittelson, David B
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/7/1
Y1 - 2012/7/1
N2 - In this paper, the effect of particle morphology on bipolar diffusion charging is studied. A modified tandem differentialmobility analyzer (TDMA) method used to measure the charge distribution of submicron particles in the range of 70-300 nm is described in detail. Themethod requires an independent measurement of the neutral fraction, followed by the measurement of the size-dependent charge distribution, which requires the knowledge of the neutral fraction. The method was validated experimentally using dioctyl sebacate and ammonium sulfate spherical particles and compared with Fuchs' theory.Diesel particles and silver aggregates were used to evaluate the impact of morphology on charging. The results show that aggregates have a slightly lower (about 7%) neutral fraction than spheres. These results are in agreement with the predictions of Lall and Friedlander's theory and previous studies. However, results from charge distribution indicate that more (about 46%) particles are negatively charged than predicted by Lall and Friedlander's theory, while 32% fewer particles are positively charged. This relatively large asymmetry between the negative and the positive charge fraction is not fully predicted by either Fuchs' or aggregate charging theories. Our results suggest that the current inversion method of scanning mobility particle sizer (SMPS) data, based on Fuchs' or Lall and Friedlander's distribution, would underestimate the total number concentration by about 15% or 27% if applied to diesel aggregates.
AB - In this paper, the effect of particle morphology on bipolar diffusion charging is studied. A modified tandem differentialmobility analyzer (TDMA) method used to measure the charge distribution of submicron particles in the range of 70-300 nm is described in detail. Themethod requires an independent measurement of the neutral fraction, followed by the measurement of the size-dependent charge distribution, which requires the knowledge of the neutral fraction. The method was validated experimentally using dioctyl sebacate and ammonium sulfate spherical particles and compared with Fuchs' theory.Diesel particles and silver aggregates were used to evaluate the impact of morphology on charging. The results show that aggregates have a slightly lower (about 7%) neutral fraction than spheres. These results are in agreement with the predictions of Lall and Friedlander's theory and previous studies. However, results from charge distribution indicate that more (about 46%) particles are negatively charged than predicted by Lall and Friedlander's theory, while 32% fewer particles are positively charged. This relatively large asymmetry between the negative and the positive charge fraction is not fully predicted by either Fuchs' or aggregate charging theories. Our results suggest that the current inversion method of scanning mobility particle sizer (SMPS) data, based on Fuchs' or Lall and Friedlander's distribution, would underestimate the total number concentration by about 15% or 27% if applied to diesel aggregates.
UR - http://www.scopus.com/inward/record.url?scp=84859902859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859902859&partnerID=8YFLogxK
U2 - 10.1080/02786826.2012.667585
DO - 10.1080/02786826.2012.667585
M3 - Article
AN - SCOPUS:84859902859
SN - 0278-6826
VL - 46
SP - 794
EP - 803
JO - Aerosol Science and Technology
JF - Aerosol Science and Technology
IS - 7
ER -