TY - JOUR
T1 - Biological research and self-driving labs in deep space supported by artificial intelligence
AU - Sanders, Lauren M.
AU - Scott, Ryan T.
AU - Yang, Jason H.
AU - Qutub, Amina Ann
AU - Garcia Martin, Hector
AU - Berrios, Daniel C.
AU - Hastings, Jaden J.A.
AU - Rask, Jon
AU - Mackintosh, Graham
AU - Hoarfrost, Adrienne L.
AU - Chalk, Stuart
AU - Kalantari, John
AU - Khezeli, Kia
AU - Antonsen, Erik L.
AU - Babdor, Joel
AU - Barker, Richard
AU - Baranzini, Sergio E.
AU - Beheshti, Afshin
AU - Delgado-Aparicio, Guillermo M.
AU - Glicksberg, Benjamin S.
AU - Greene, Casey S.
AU - Haendel, Melissa
AU - Hamid, Arif A.
AU - Heller, Philip
AU - Jamieson, Daniel
AU - Jarvis, Katelyn J.
AU - Komarova, Svetlana V.
AU - Komorowski, Matthieu
AU - Kothiyal, Prachi
AU - Mahabal, Ashish
AU - Manor, Uri
AU - Mason, Christopher E.
AU - Matar, Mona
AU - Mias, George I.
AU - Miller, Jack
AU - Myers, Jerry G.
AU - Nelson, Charlotte
AU - Oribello, Jonathan
AU - Park, Seung min
AU - Parsons-Wingerter, Patricia
AU - Prabhu, R. K.
AU - Reynolds, Robert J.
AU - Saravia-Butler, Amanda
AU - Saria, Suchi
AU - Sawyer, Aenor
AU - Singh, Nitin Kumar
AU - Snyder, Michael
AU - Soboczenski, Frank
AU - Soman, Karthik
AU - Theriot, Corey A.
AU - Van Valen, David
AU - Venkateswaran, Kasthuri
AU - Warren, Liz
AU - Worthey, Liz
AU - Zitnik, Marinka
AU - Costes, Sylvain V.
N1 - Publisher Copyright:
© 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
PY - 2023/3
Y1 - 2023/3
N2 - Space biology research aims to understand fundamental spaceflight effects on organisms, develop foundational knowledge to support deep space exploration and, ultimately, bioengineer spacecraft and habitats to stabilize the ecosystem of plants, crops, microbes, animals and humans for sustained multi-planetary life. To advance these aims, the field leverages experiments, platforms, data and model organisms from both spaceborne and ground-analogue studies. As research is extended beyond low Earth orbit, experiments and platforms must be maximally automated, light, agile and intelligent to accelerate knowledge discovery. Here we present a summary of decadal recommendations from a workshop organized by the National Aeronautics and Space Administration on artificial intelligence, machine learning and modelling applications that offer solutions to these space biology challenges. The integration of artificial intelligence into the field of space biology will deepen the biological understanding of spaceflight effects, facilitate predictive modelling and analytics, support maximally automated and reproducible experiments, and efficiently manage spaceborne data and metadata, ultimately to enable life to thrive in deep space.
AB - Space biology research aims to understand fundamental spaceflight effects on organisms, develop foundational knowledge to support deep space exploration and, ultimately, bioengineer spacecraft and habitats to stabilize the ecosystem of plants, crops, microbes, animals and humans for sustained multi-planetary life. To advance these aims, the field leverages experiments, platforms, data and model organisms from both spaceborne and ground-analogue studies. As research is extended beyond low Earth orbit, experiments and platforms must be maximally automated, light, agile and intelligent to accelerate knowledge discovery. Here we present a summary of decadal recommendations from a workshop organized by the National Aeronautics and Space Administration on artificial intelligence, machine learning and modelling applications that offer solutions to these space biology challenges. The integration of artificial intelligence into the field of space biology will deepen the biological understanding of spaceflight effects, facilitate predictive modelling and analytics, support maximally automated and reproducible experiments, and efficiently manage spaceborne data and metadata, ultimately to enable life to thrive in deep space.
UR - http://www.scopus.com/inward/record.url?scp=85150972658&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85150972658&partnerID=8YFLogxK
U2 - 10.1038/s42256-023-00618-4
DO - 10.1038/s42256-023-00618-4
M3 - Review article
AN - SCOPUS:85150972658
SN - 2522-5839
VL - 5
SP - 208
EP - 219
JO - Nature Machine Intelligence
JF - Nature Machine Intelligence
IS - 3
ER -