TY - JOUR
T1 - Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming
AU - Hamilton, Trinity L.
AU - Lange, Rachel K.
AU - Boyd, Eric S.
AU - Peters, John W.
PY - 2011/8
Y1 - 2011/8
N2 - The near ubiquitous distribution of nifH genes in sediments sampled from 14 high-temperature (48.0-89.0°C) and acidic (pH 1.90-5.02) geothermal springs in Yellowstone National Park suggested a role for the biological reduction of dinitrogen (N 2) to ammonia (NH 3) (e.g. nitrogen fixation or diazotrophy) in these environments. nifH genes from these environments formed three unique phylotypes that were distantly related to acidiphilic, mesophilic diazotrophs. Acetylene reduction assays and 15N 2 tracer studies in microcosms containing sediments sampled from acidic and high-temperature environments where nifH genes were detected confirmed the potential for biological N 2 reduction in these environments. Rates of acetylene reduction by sediment-associated populations were positively correlated with the concentration of NH 4 +, suggesting a potential relationship between NH 4 + consumption and N 2 fixation activity. Amendment of microcosms with NH 4 + resulted in increased lag times in acetylene reduction assays. Manipulation of incubation temperature and pH in acetylene reduction assays indicated that diazotrophic populations are specifically adapted to local conditions. Incubation of sediments in the presence of a N 2 headspace yielded a highly enriched culture containing a single nifH phylotype. This phylotype was detected in all 14 geothermal spring sediments examined and its abundance ranged from ~780 to ~6800 copies (g dry weight sediment) -1, suggesting that this organism may contribute N to the ecosystems. Collectively, these results for the first time demonstrate thermoacidiphilic N 2 fixation in the natural environment and extend the upper temperature for biological N 2 fixation in terrestrial systems.
AB - The near ubiquitous distribution of nifH genes in sediments sampled from 14 high-temperature (48.0-89.0°C) and acidic (pH 1.90-5.02) geothermal springs in Yellowstone National Park suggested a role for the biological reduction of dinitrogen (N 2) to ammonia (NH 3) (e.g. nitrogen fixation or diazotrophy) in these environments. nifH genes from these environments formed three unique phylotypes that were distantly related to acidiphilic, mesophilic diazotrophs. Acetylene reduction assays and 15N 2 tracer studies in microcosms containing sediments sampled from acidic and high-temperature environments where nifH genes were detected confirmed the potential for biological N 2 reduction in these environments. Rates of acetylene reduction by sediment-associated populations were positively correlated with the concentration of NH 4 +, suggesting a potential relationship between NH 4 + consumption and N 2 fixation activity. Amendment of microcosms with NH 4 + resulted in increased lag times in acetylene reduction assays. Manipulation of incubation temperature and pH in acetylene reduction assays indicated that diazotrophic populations are specifically adapted to local conditions. Incubation of sediments in the presence of a N 2 headspace yielded a highly enriched culture containing a single nifH phylotype. This phylotype was detected in all 14 geothermal spring sediments examined and its abundance ranged from ~780 to ~6800 copies (g dry weight sediment) -1, suggesting that this organism may contribute N to the ecosystems. Collectively, these results for the first time demonstrate thermoacidiphilic N 2 fixation in the natural environment and extend the upper temperature for biological N 2 fixation in terrestrial systems.
UR - http://www.scopus.com/inward/record.url?scp=80051918126&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051918126&partnerID=8YFLogxK
U2 - 10.1111/j.1462-2920.2011.02475.x
DO - 10.1111/j.1462-2920.2011.02475.x
M3 - Article
C2 - 21450003
AN - SCOPUS:80051918126
SN - 1462-2912
VL - 13
SP - 2204
EP - 2215
JO - Environmental microbiology
JF - Environmental microbiology
IS - 8
ER -