Bioactivation of the tobacco carcinogens 4-aminobiphenyl (4-ABP) and 2-amino-9H-pyrido[2,3-b]indole (AαC) in human bladder RT4 cells

Medjda Bellamri, Lihua Yao, Radha Bonala, Francis Johnson, Linda B von Weymarn, Robert Turesky

Research output: Contribution to journalArticle

Abstract

Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1–10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50% but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1–1 µM), a potent inhibitor of CYP2A, resulted in a 90% decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.

Original languageEnglish (US)
Pages (from-to)1893-1902
Number of pages10
JournalArchives of Toxicology
Volume93
Issue number7
DOIs
StatePublished - Jul 1 2019

Fingerprint

Tobacco
Carcinogens
DNA Adducts
Urinary Bladder
Amines
2-Naphthylamine
Urinary Bladder Neoplasms
Meats
Smoke
Meat
DNA
Methoxsalen
Urothelium
Quinoxalines
4-biphenylamine
2-amino-9H-pyrido(2,3-b)indole
Liquid chromatography
Occupational Exposure
Liquid Chromatography
Cytochrome P-450 Enzyme System

Keywords

  • 2-Amino-9H-pyrido[2,3-b]indole
  • 4-Aminobiphenyl
  • Aromatic amines
  • Bladder cancer
  • DNA adduct
  • Heterocyclic aromatic amines

PubMed: MeSH publication types

  • Journal Article

Cite this

Bioactivation of the tobacco carcinogens 4-aminobiphenyl (4-ABP) and 2-amino-9H-pyrido[2,3-b]indole (AαC) in human bladder RT4 cells. / Bellamri, Medjda; Yao, Lihua; Bonala, Radha; Johnson, Francis; von Weymarn, Linda B; Turesky, Robert.

In: Archives of Toxicology, Vol. 93, No. 7, 01.07.2019, p. 1893-1902.

Research output: Contribution to journalArticle

@article{138abbecbc9d469cb7fc003825d81672,
title = "Bioactivation of the tobacco carcinogens 4-aminobiphenyl (4-ABP) and 2-amino-9H-pyrido[2,3-b]indole (AαC) in human bladder RT4 cells",
abstract = "Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1–10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50{\%} but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1–1 µM), a potent inhibitor of CYP2A, resulted in a 90{\%} decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.",
keywords = "2-Amino-9H-pyrido[2,3-b]indole, 4-Aminobiphenyl, Aromatic amines, Bladder cancer, DNA adduct, Heterocyclic aromatic amines",
author = "Medjda Bellamri and Lihua Yao and Radha Bonala and Francis Johnson and {von Weymarn}, {Linda B} and Robert Turesky",
year = "2019",
month = "7",
day = "1",
doi = "10.1007/s00204-019-02486-7",
language = "English (US)",
volume = "93",
pages = "1893--1902",
journal = "Archiv fur Toxikologie",
issn = "0003-9446",
publisher = "Springer Verlag",
number = "7",

}

TY - JOUR

T1 - Bioactivation of the tobacco carcinogens 4-aminobiphenyl (4-ABP) and 2-amino-9H-pyrido[2,3-b]indole (AαC) in human bladder RT4 cells

AU - Bellamri, Medjda

AU - Yao, Lihua

AU - Bonala, Radha

AU - Johnson, Francis

AU - von Weymarn, Linda B

AU - Turesky, Robert

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1–10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50% but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1–1 µM), a potent inhibitor of CYP2A, resulted in a 90% decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.

AB - Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1–10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50% but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1–1 µM), a potent inhibitor of CYP2A, resulted in a 90% decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.

KW - 2-Amino-9H-pyrido[2,3-b]indole

KW - 4-Aminobiphenyl

KW - Aromatic amines

KW - Bladder cancer

KW - DNA adduct

KW - Heterocyclic aromatic amines

UR - http://www.scopus.com/inward/record.url?scp=85067666364&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067666364&partnerID=8YFLogxK

U2 - 10.1007/s00204-019-02486-7

DO - 10.1007/s00204-019-02486-7

M3 - Article

VL - 93

SP - 1893

EP - 1902

JO - Archiv fur Toxikologie

JF - Archiv fur Toxikologie

SN - 0003-9446

IS - 7

ER -