Bio-inspired strategies for next-generation perovskite solar mobile power sources

Jungjin Yoon, Yuchen Hou, Abbey Marie Knoepfel, Dong Yang, Tao Ye, Luyao Zheng, Neela Yennawar, Mohan Sanghadasa, Shashank Priya, Kai Wang

Research output: Contribution to journalReview articlepeer-review

17 Scopus citations


Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.

Original languageEnglish (US)
Pages (from-to)12915-12984
Number of pages70
JournalChemical Society Reviews
Issue number23
StatePublished - Dec 7 2021
Externally publishedYes

Bibliographical note

Funding Information:
K. W. and Y. H. acknowledge the support from the Air Force Office of Scientific Research under award number FA9550-20-1-0157. S. P. acknowledges the financial support from USDA NIFA grant number 2019-67021-28991. D. Y. acknowledges the support from Norfolk State University through NSF-CREST grant number HRD 1547771. T. Y. and J. Y. acknowledge the support from the U.S. Department of Energy Award No. DE-SC0019844, under the STTR program (Prime – NanoSonic Inc.).

Publisher Copyright:
© The Royal Society of Chemistry.

PubMed: MeSH publication types

  • Journal Article
  • Review


Dive into the research topics of 'Bio-inspired strategies for next-generation perovskite solar mobile power sources'. Together they form a unique fingerprint.

Cite this