Bigger is better: Improved nature conservation and economic returns from landscape-level mitigation

Christina M. Kennedy, Daniela A. Miteva, Leandro Baumgarten, Peter L. Hawthorne, Kei Sochi, Stephen Polasky, James R. Oakleaf, Elizabeth M. Uhlhorn, Joseph Kiesecker

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Impact mitigation is a primary mechanism on which countries rely to reduce environmental externalities and balance development with conservation. Mitigation policies are transitioning from traditional project-by-project planning to landscape-level planning. Although this larger-scale approach is expected to provide greater conservation benefits at the lowest cost, empirical justification is still scarce. Using commercial sugarcane expansion in the Brazilian Cerrado as a case study, we apply economic and biophysical steady-state models to quantify the benefits of the Brazilian Forest Code (FC) under landscape- and property-level planning. We find that FC compliance imposes small costs to business but can generate significant long-term benefits to nature: supporting 32 (±37) additional species (largely habitat specialists), storing 593,000 to 2,280,000 additional tons of carbon worth $69 million to $265 million ($ pertains to U.S. dollars), and marginally improving surface water quality. Relative to property-level compliance, we find that landscape-level compliance reduces total business costs by $19 million to $35 million per 6-year sugarcane growing cycle while often supporting more species and storing more carbon. Our results demonstrate that landscape-level mitigation provides cost-effective conservation and can be used to promote sustainable development.

Original languageEnglish (US)
Article numbere1501021
JournalScience Advances
Volume2
Issue number7
DOIs
StatePublished - 2016

Bibliographical note

Funding Information:
We are grateful to E. Okumura, E. Garcia, C. Pereira, A. Poloni, K. Souza, and J. Pereira for their input on the business context and sugarcane profit modeling; A. Davidson, C. Sekercioglu, E. M. Vieira, and P. Develey for providing data and input on the biodiversity parameters and results; P. Hamel, L. Azevedo, J. Guimarães, K. Voss, I. Alameddine, S. Thompson, B. Keeler, and R. Griffin for their guidance on the hydrological modeling; B. Murray, T. Kroeger, B. Griscom, M. Borgo, G. Tiepolo, and N. Virgilio for helpful discussions on carbon valuation; M. Matsumoto for help with calculations of FC requirements; S. Baruch-Mordo for help with R coding issues; J. Wilkinson and A. B. Villarroya for input on mitigation policies; and J. Wilkinson, P. Kareiva, and M. Weick for helpful comments on earlier drafts. Funding: This research was supported by The Dow Chemical Company Foundation, The Dow Chemical Company, The Nature Conservancy, Anne Ray Charitable Trust, and the 3M Foundation. Author contributions: C.M.K., D.A.M., and J.K. conceived and designed the study; D.A.M., C.M.K., L.B., and K.S. collected the data; D.A.M., C.M.K., P.L.H., L.B., K.S., J.R.O., and S.P. conducted the modeling and analysis; L.B. assessed Brazilian FC requirements; E.M.U. informed the business context; D.A.M., C.M.K., and K.S. produced the figures and tables; C.M.K. and D.A.M. designed and wrote the paper; and D.A.M., C.M.K., J.K., S.P., L.B., K.S., P.L.H., E.M.U., and J.R.O. revised the paper. Competing interests: The authors declare that they have no competing interests. Data availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. Data for this research are available from The Nature Conservancy and are found at http://nature.org/TNC-Dow-Brazil.

Fingerprint Dive into the research topics of 'Bigger is better: Improved nature conservation and economic returns from landscape-level mitigation'. Together they form a unique fingerprint.

Cite this