Biases in open-path carbon dioxide flux measurements: Roles of instrument surface heat exchange and analyzer temperature sensitivity

Malte Julian Deventer, Tyler Roman, Ivan Bogoev, Randall K. Kolka, Matt Erickson, Xuhui Lee, John M Baker, Dylan B. Millet, Timothy J. Griffis

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Eddy covariance (EC) measurements of ecosystem-atmosphere carbon dioxide (CO2) exchange provide the most direct assessment of the terrestrial carbon cycle. Measurement biases for open-path (OP) CO2 concentration and flux measurements have been reported for over 30 years, but their origin and appropriate correction approach remain unresolved. Here, we quantify the impacts of OP biases on carbon and radiative forcing budgets for a sub-boreal wetland. Comparison with a reference closed-path (CP) system indicates that a systematic OP flux bias (0.54μmolm−2s−1) persists for all seasons leading to a 110% overestimate of the ecosystem CO2 sink (cumulative error of 78 gC m−2). Two potential OP bias sources are considered: Sensor-path heat exchange (SPHE) and analyzer temperature sensitivity. We examined potential OP correction approaches including: i) Fast temperature measurements within the measurement path and sensor surfaces; ii) Previously published parameterizations; and iii) Optimization algorithms. The measurements revealed year-round average temperature and heat flux gradients of 2.9 °C and 16 W m−2 between the bottom sensor surfaces and atmosphere, indicating SPHE-induced OP bias. However, measured SPHE correlated poorly with the observed differences between OP and CP CO2 fluxes. While previously proposed nominally universal corrections for SPHE reduced the cumulative OP bias, they led to either systematic under-correction (by 38.1 gC m−2) or to systematic over-correction (by 17-37 gC m−2). The resulting budget errors exceeded CP random uncertainty and change the sign of the overall carbon and radiative forcing budgets. Analysis of OP calibration residuals as a function of temperature revealed a sensitivity of 5μmolm−3K−1. This temperature sensitivity causes CO2 calibration errors proportional to sample air fluctuations that can offset the observed growing season flux bias by 50%. Consequently, we call for a new OP correction framework that characterizes SPHE- and temperature-induced CO2 measurement errors.

Original languageEnglish (US)
Article number108216
JournalAgricultural and Forest Meteorology
Volume296
DOIs
StatePublished - Jan 15 2021

Bibliographical note

Funding Information:
This work was supported by NASA's Interdisciplinary Research in Earth Science program (IDS Grant # NNX17AK18G), and by the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA Grant 2018‐67019‐27808).

Funding Information:
This work was supported by NASA's Interdisciplinary Research in Earth Science program (IDS Grant # NNX17AK18G), and by the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA Grant 2018?67019?27808).

Publisher Copyright:
© 2020 Elsevier B.V.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Biases in open-path carbon dioxide flux measurements: Roles of instrument surface heat exchange and analyzer temperature sensitivity'. Together they form a unique fingerprint.

Cite this