Beyond two-cell networks: Experimental measurement of neuronal responses to multiple synaptic inputs

Theoden I. Netoff, Corey D. Acker, Jonathan C. Bettencourt, John A. White

Research output: Contribution to journalArticlepeer-review

71 Scopus citations


Oscillations of large populations of neurons are thought to be important in the normal functioning of the brain. We have used phase response curve (PRC) methods to characterize the dynamics of single neurons and predict population dynamics. Our past experimental work was limited to special circumstances (e.g., 2-cell networks of periodically firing neurons). Here, we explore the feasibility of extending our methods to predict the synchronization properties of stellate cells (SCs) in the rat entorhinal cortex under broader conditions. In particular, we test the hypothesis that PRCs in SCs scale linearly with changes in synaptic amplitude, and measure how well responses to Poisson process-driven inputs can be predicted in terms of PRCs. Although we see nonlinear responses to excitatory and inhibitory inputs, we find that models based on weak coupling account for scaling and Poisson process-driven inputs reasonably accurately.

Original languageEnglish (US)
Pages (from-to)287-295
Number of pages9
JournalJournal of Computational Neuroscience
Issue number3
StatePublished - Jun 2005

Bibliographical note

Funding Information:
We thank Nancy Kopell, G. Bard Ermentrout and Eugene Izhikevich for advice and useful discussions. This work was supported by NSF grant 0085177 (White), NIH R01 NS34425 (White), and NIH F32 MH066555 (Netoff).


  • Dynamic clamp
  • Entorhinal cortex
  • Oscillations
  • Phase response curve
  • Weak coupling


Dive into the research topics of 'Beyond two-cell networks: Experimental measurement of neuronal responses to multiple synaptic inputs'. Together they form a unique fingerprint.

Cite this