Beyond Average: Individualized Visual Scanpath Prediction

Xianyu Chen, Ming Jiang, Qi Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Understanding how attention varies across individuals has significant scientific and societal impacts. However, existing visual scanpath models treat attention uniformly, neglecting individual differences. To bridge this gap, this paper focuses on individualized scanpath prediction (ISP), a new attention modeling task that aims to accurately predict how different individuals shift their attention in diverse visual tasks. It proposes an ISP method featuring three novel technical components: (1) an observer encoder to characterize and integrate an observer's unique attention traits, (2) an observer-centric feature integration approach that holistically combines visual features, task guidance, and observer-specific characteristics, and (3) an adaptive fixation prioritization mechanism that refines scanpath predictions by dynamically prioritizing semantic feature maps based on individual observers' attention traits. These novel components allow scanpath models to effectively address the attention variations across different observers. Our method is generally applicable to different datasets, model architectures, and visual tasks, offering a comprehensive tool for transforming general scanpath models into individualized ones. Comprehensive evaluations using value-based and ranking-based metrics verify the method's effectiveness and generalizability.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages25420-25431
Number of pages12
ISBN (Electronic)9798350353006
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period6/16/246/22/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Keywords

  • Eye-Tracking
  • Individualized scanpath
  • Scanpath prediction

Fingerprint

Dive into the research topics of 'Beyond Average: Individualized Visual Scanpath Prediction'. Together they form a unique fingerprint.

Cite this