Behavior of elemental sets in regression

David J. Olive, Douglas M. Hawkins

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Elemental sets are used to produce trial estimates b of the regression coefficients β . If b0 minimizes ∥ b - β ∥ among all elemental fits b, then ∥ b0 - β ∥ = OP (n- 1), regardless of the criterion used. For any estimator bA, ∥ bA - β ∥ is at best OP (n- 1 / 2) . Hence restricting fits to elemental introduces asymptotically negligible error.

Original languageEnglish (US)
Pages (from-to)621-624
Number of pages4
JournalStatistics and Probability Letters
Volume77
Issue number6
DOIs
StatePublished - Mar 15 2007

Bibliographical note

Funding Information:
This research was supported by NSF Grants DMS 9806584 and DMS 0202922.

Keywords

  • Breakdown
  • Depth
  • LMS
  • LTA
  • Outliers
  • Robust regression

Fingerprint

Dive into the research topics of 'Behavior of elemental sets in regression'. Together they form a unique fingerprint.

Cite this