Abstract
A newly developed beads mill was used to create well-dispersed suspensions of TiO2 (titania) nanoparticles in methyl methacrylate (MMA) and TiO2-PMMA nanocomposites were synthesized by subsequent polymerization of the TiO2-MMA suspension. Beads milling successfully broke up titania nanoparticle agglomerates with the addition of the coupling agent (3-acryloxypropyl) trimethoxysilane (APTMOS) to the titania-MMA suspension. Agglomerated particles were broken up into primary particles as small as 10 nm in suspensions with nanoparticle mass fractions as high as 0.05. Well-dispersed suspensions of titania nanoparticles had reduced UV transmission but visible light transmittance similar to pure MMA. TEM images showed that the milled nanoparticles remained well dispersed in titania-PMMA nanocomposites, and the addition of titania nanoparticles to PMMA increased the PMMA thermal stability. Spin-coated titania-PMMA films had higher refractive indices than pure PMMA films, with film of higher titania weight percent having higher refractive indices.
Original language | English (US) |
---|---|
Pages (from-to) | 2597-2604 |
Number of pages | 8 |
Journal | Industrial and Engineering Chemistry Research |
Volume | 47 |
Issue number | 8 |
DOIs | |
State | Published - Apr 16 2008 |