Abstract
The application of stable hydrogen isotope (dD) techniques has swiftly advanced our understanding of animal movements, but this progression is dominated by studies of birds and relatively long-distance, north-south migrants. This dominance reflects the challenge of incorporating multiple sources of error into geographic assignments and the nature of spatially explicit dD models, which possess greater latitudinal than longitudinal resolution. However, recent progress in likelihood-based assignments that incorporate multiple sources of isotopic error and Bayesian approaches that include additional sources of information may advance finer-scale understanding of animal movements. We develop a stable-isotope method for determining probable origins of bats within hibernacula and show that this method produces spatially explicit, continuous assignments with regional resolution. We outline how these assignments can be used to infer hibernacula connectivity, an application that could inform spatial modeling of white-nose syndrome. Additionally, estimates of seasonal and annual flight distances for many cave-dwelling bat species can be derived from this approach. We also discuss how this application can be used in general to provide insights into variable migratory and foraging strategies within bat populations.
Original language | English (US) |
---|---|
Pages (from-to) | 1428-1434 |
Number of pages | 7 |
Journal | Ecological Applications |
Volume | 22 |
Issue number | 5 |
DOIs | |
State | Published - Jul 2012 |
Keywords
- Deuterium
- Disease transmission
- Geographic origin
- Hibernacula
- Hydrogen isotope (dD)
- Isoscapes
- Little brown bat
- Migration
- Migratory connectivity
- Molt period
- Myotis lucifugus
- White-nose syndrome