Basis of symmetric polynomials for many-boson light-front wave functions

Sophia S. Chabysheva, John R. Hiller

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

We provide an algorithm for the construction of orthonormal multivariate polynomials that are symmetric with respect to the interchange of any two coordinates on the unit hypercube and are constrained to the hyperplane where the sum of the coordinates is one. These polynomials form a basis for the expansion of bosonic light-front momentum-space wave functions, as functions of longitudinal momentum, where momentum conservation guarantees that the fractions are on the interval [0,1] and sum to one. This generalizes earlier work on three-boson wave functions to wave functions for arbitrarily many identical bosons. A simple application in two-dimensional φ4 theory illustrates the use of these polynomials.

Original languageEnglish (US)
Article number063310
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume90
Issue number6
DOIs
StatePublished - Dec 17 2014

Bibliographical note

Publisher Copyright:
© 2014 American Physical Society.

Fingerprint

Dive into the research topics of 'Basis of symmetric polynomials for many-boson light-front wave functions'. Together they form a unique fingerprint.

Cite this