Abstract
Genome editing represents a promising strategy for the therapeutic correction of COL7A1 mutations that cause recessive dystrophic epidermolysis bullosa (RDEB). DNA cleavage followed by homology-directed repair (HDR) using an exogenous template has previously been used to correct COL7A1 mutations. HDR rates can be modest, and the double-strand DNA breaks that initiate HDR commonly result in accompanying undesired insertions and deletions (indels). To overcome these limitations, we applied an A•T→G•C adenine base editor (ABE) to correct two different COL7A1 mutations in primary fibroblasts derived from RDEB patients. ABE enabled higher COL7A1 correction efficiencies than previously reported HDR efforts. Moreover, ABE obviated the need for a repair template, and minimal indels or editing at off-target sites was detected. Base editing restored the endogenous type VII collagen expression and function in vitro. We also treated induced pluripotent stem cells (iPSCs) derived from RDEB fibroblasts with ABE. The edited iPSCs were differentiated into mesenchymal stromal cells, a cell population with therapeutic potential for RDEB. In a mouse teratoma model, the skin derived from ABE-treated iPSCs showed the proper deposition of C7 at the dermal–epidermal junction in vivo. These demonstrate that base editing provides an efficient and precise genome editing method for autologous cell engineering for RDEB.
Original language | English (US) |
---|---|
Pages (from-to) | 338-347.e5 |
Journal | Journal of Investigative Dermatology |
Volume | 140 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2020 |
Bibliographical note
Publisher Copyright:© 2019 The Authors
PubMed: MeSH publication types
- Journal Article
- Research Support, N.I.H., Extramural
- Research Support, Non-U.S. Gov't