Barrier Heights for Diels-Alder Transition States Leading to Pentacyclic Adducts: A Benchmark Study of Crowded, Strained Transition States of Large Molecules

Maryam Mansoori Kermani, Hanwei Li, Alistar Ottochian, Orlando Crescenzi, Benjamin G. Janesko, Giovanni Scalmani, Michael J. Frisch, Ilaria Ciofini, Carlo Adamo, Donald G. Truhlar

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Theoretical characterization of reactions of complex molecules depends on providing consistent accuracy for the relative energies of intermediates and transition states. Here we employ the DLPNO-CCSD(T) method with core-valence correlation, large basis sets, and extrapolation to the CBS limit to provide benchmark values for Diels-Alder transition states leading to competitive strained pentacyclic adducts. We then used those benchmarks to test a diverse set of wave function and density functional methods for the absolute and relative barrier heights of these transition states. Our results show that only a few of the tested density functionals can predict the absolute barrier heights satisfactorily, although relative barrier heights are more accurate. The most accurate functionals tested are ωB97M-V, M11plus, ωB97X-V, PBE-D3(0), M11, and MN15 with MUDs from best estimates less than 3.0 kcal. These findings can guide selection of density functionals for future studies of crowded, strained transition states of large molecules.

Original languageEnglish (US)
Pages (from-to)6522-6531
Number of pages10
JournalJournal of Physical Chemistry Letters
Volume14
Issue number29
DOIs
StatePublished - Jul 27 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Barrier Heights for Diels-Alder Transition States Leading to Pentacyclic Adducts: A Benchmark Study of Crowded, Strained Transition States of Large Molecules'. Together they form a unique fingerprint.

Cite this