Bandwidth-constrained distributed estimation for wireless sensor networks - Part I: Gaussian case

Alejandro Ribeiro, Georgios B. Giannakis

Research output: Contribution to journalArticle

376 Scopus citations

Abstract

We study deterministic mean-location parameter estimation when only quantized versions of the original observations are available, due to bandwidth constraints. When the dynamic range of the parameter is small or comparable with the noise variance, we introduce a class of maximum-likelihood estimators that require transmitting just one bit per sensor to achieve an estimation variance close to that of the (clairvoyant) sample mean estimator. When the dynamic range is comparable or larger than the noise standard deviation, we show that an optimum quantization step exists to achieve the best possible variance for a given bandwidth constraint. We will also establish that in certain cases the sample mean estimator formed by quantized observations is preferable for complexity reasons. We finally touch upon algorithm implementation issues and guarantee that all the numerical maximizations required by the proposed estimators are concave.

Original languageEnglish (US)
Pages (from-to)1131-1143
Number of pages13
JournalIEEE Transactions on Signal Processing
Volume54
Issue number3
DOIs
StatePublished - Mar 1 2006

Keywords

  • Parameter estimation
  • Wireless sensor networks

Fingerprint Dive into the research topics of 'Bandwidth-constrained distributed estimation for wireless sensor networks - Part I: Gaussian case'. Together they form a unique fingerprint.

  • Cite this