TY - JOUR
T1 - Bandwagons I, too, have known
AU - Bernardo, Rex
N1 - Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - Key message: Bandwagons come in waves. A plant breeder, just like a surfer, needs to carefully choose which waves to be on. Abstract: A bandwagon is an idea, activity, or cause that becomes increasingly fashionable as more and more people adopt it. In a 1991 article entitled Bandwagons I Have Known, Professor N. W. Simmonds described several bandwagons that he encountered in his career, beginning with induced polyploidy and mutation breeding and ending with the then-new field of biotechnology. This article reviews and speculates about post-1990 bandwagons in plant improvement, including transgenic cultivars, quantitative trait locus (QTL) mapping, association mapping, genomewide (or genomic) selection, phenomics, envirotyping, and genome editing. The life cycle of a bandwagon includes an excitement phase of hype and funding; a realization phase when the initial hype is either tempered or the initial expectations are found to have been too low; and a reality phase when the useful aspects of a bandwagon become part of mainstream thinking and practice, or when an unsuccessful bandwagon is largely abandoned. During the realization phase, a new bandwagon that draws our attention and gives us renewed optimism typically arises. The most popular bandwagons, such as QTL mapping, are those for which the needed experimental resources are accessible, the required technical knowledge and skills can be easily learned, and the outputs can almost always be reported. The favorite bandwagon of any plant breeder has, in one way or another, resulted from Mendel’s seminal discoveries 150 years ago. Our community of plant breeders needs to be continually diligent in welcoming new bandwagons, but also in hopping off from those that do not prove useful.
AB - Key message: Bandwagons come in waves. A plant breeder, just like a surfer, needs to carefully choose which waves to be on. Abstract: A bandwagon is an idea, activity, or cause that becomes increasingly fashionable as more and more people adopt it. In a 1991 article entitled Bandwagons I Have Known, Professor N. W. Simmonds described several bandwagons that he encountered in his career, beginning with induced polyploidy and mutation breeding and ending with the then-new field of biotechnology. This article reviews and speculates about post-1990 bandwagons in plant improvement, including transgenic cultivars, quantitative trait locus (QTL) mapping, association mapping, genomewide (or genomic) selection, phenomics, envirotyping, and genome editing. The life cycle of a bandwagon includes an excitement phase of hype and funding; a realization phase when the initial hype is either tempered or the initial expectations are found to have been too low; and a reality phase when the useful aspects of a bandwagon become part of mainstream thinking and practice, or when an unsuccessful bandwagon is largely abandoned. During the realization phase, a new bandwagon that draws our attention and gives us renewed optimism typically arises. The most popular bandwagons, such as QTL mapping, are those for which the needed experimental resources are accessible, the required technical knowledge and skills can be easily learned, and the outputs can almost always be reported. The favorite bandwagon of any plant breeder has, in one way or another, resulted from Mendel’s seminal discoveries 150 years ago. Our community of plant breeders needs to be continually diligent in welcoming new bandwagons, but also in hopping off from those that do not prove useful.
UR - http://www.scopus.com/inward/record.url?scp=84988937725&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988937725&partnerID=8YFLogxK
U2 - 10.1007/s00122-016-2772-5
DO - 10.1007/s00122-016-2772-5
M3 - Article
C2 - 27681088
AN - SCOPUS:84988937725
SN - 0040-5752
VL - 129
SP - 2323
EP - 2332
JO - Theoretical and Applied Genetics
JF - Theoretical and Applied Genetics
IS - 12
ER -