Projects per year
Abstract
We present a comprehensive study of the band alignments of two-dimensional (2D) semiconducting materials and highlight the possibilities of forming momentum-matched type I, II, and III heterostructures, an enticing possibility being atomic heterostructures where the constituent monolayers have band edges at the zone center, i.e., Γ valley. Our study, which includes the group IV and III-V compound monolayer materials, group V elemental monolayer materials, transition-metal dichalcogenides, and transition-metal trichalcogenides, reveals that almost half of these materials have conduction and/or valence band edges residing at the zone center. Using first-principles density functional calculations, we present the type of the heterostructure for 903 different possible combinations of these 2D materials which establishes a periodic table of heterostructures.
Original language | English (US) |
---|---|
Article number | 035125 |
Journal | Physical Review B |
Volume | 94 |
Issue number | 3 |
DOIs | |
State | Published - Jul 11 2016 |
Bibliographical note
Publisher Copyright:© 2016 American Physical Society.
MRSEC Support
- Partial
Fingerprint
Dive into the research topics of 'Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching'. Together they form a unique fingerprint.Projects
- 2 Finished
-
University of Minnesota MRSEC (DMR-1420013)
Lodge, T. P. (PI)
11/1/14 → 10/31/20
Project: Research project
-
MRSEC IRG-1: Electrostatic Control of Materials
Leighton, C. (Coordinator), Birol, T. (Senior Investigator), Fernandes, R. M. (Senior Investigator), Frisbie, D. (Senior Investigator), Goldman, A. M. (Senior Investigator), Greven, M. (Senior Investigator), Jalan, B. (Senior Investigator), Koester, S. J. (Senior Investigator), He, T. (Researcher), Jeong, J. S. (Researcher), Koirala, S. (Researcher), Paul, A. (Researcher), Thoutam, L. R. (Researcher) & Yu, G. (Researcher)
11/1/14 → 10/31/20
Project: Research project