Avoidance region discovery: A summary of results

Emre Eftelioglu, Xun Tang, Shashi Shekhar

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations


Given a set of GPS trajectories, avoidance region discovery (ARD) finds regions that are avoided by drivers. ARD is important for applications such as sociology, city/transportation planning and crime mitigation, where it can help domain users understand the driver behavior under different concerns (e.g. rush hour, congestion, dangerous neighborhood, etc.). ARD is challenging because of the large number of trajectories with thousands of GPS points, large number of candidate avoidance regions, and the cost of evaluating those. Related work is focused on finding evasive trajectories for a given set of avoidance regions. Distinct from the related work, we propose an Avoidance Region Miner (ARM) approach that can detect both the avoidance regions and evasive trajectories just by using the trajectories in hand without the need of an additional input. A case study on real trajectory data confirms that ARM discovers such regions for further investigation by domain users. Experiments show that ARM yields substantial computational savings compared to a baseline approach.

Original languageEnglish (US)
Number of pages9
StatePublished - 2018
Event2018 SIAM International Conference on Data Mining, SDM 2018 - San Diego, United States
Duration: May 3 2018May 5 2018


Other2018 SIAM International Conference on Data Mining, SDM 2018
Country/TerritoryUnited States
CitySan Diego

Bibliographical note

Publisher Copyright:
© 2018 by SIAM.


Dive into the research topics of 'Avoidance region discovery: A summary of results'. Together they form a unique fingerprint.

Cite this